Advertisement

Current Pathobiology Reports

, Volume 6, Issue 1, pp 1–13 | Cite as

Targeting the Microbiota, From Irritable Bowel Syndrome to Mood Disorders: Focus on Probiotics and Prebiotics

  • Matteo M. Pusceddu
  • Kaitlin Murray
  • Melanie G. Gareau
Microbiome and Tissue Homeostasis (AS Neish and R Jones, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Microbiome and Tissue Homeostasis

Abstract

Purpose of Review

The crosstalk between the gut and the brain has revealed a complex communication system responsible for maintaining a proper gastrointestinal homeostasis as well as affect emotional mood and cognitive functions. Recent research has revealed that beneficial manipulation of the microbiota by probiotics and prebiotics represents an emerging and novel strategy for the treatment of a large spectrum of diseases ranging from visceral pain to mood disorders. The review critically evaluates current knowledge of the effects exerted by both probiotics and prebiotics in irritable bowel syndrome (IBS) and mood disorders such as anxiety and depression.

Recent Findings

Relevant literature was identified through a search of MEDLINE via PubMed using the following words, “probiotics”, “prebiotics”, “microbiota”, and “gut-brain axis” in combination with “stress”, “depression”, “IBS”, and “anxiety”. A number of trials have shown efficacy of probiotics and prebiotics in ameliorating both IBS-related symptoms and emotional states. However, limitations have been found especially due to the small number of clinical studies, studies’ design, patient sample size, and placebo effect.

Summary

Nonetheless, current finding supports the view that beneficial manipulation of the microbiota through both probiotics and prebiotics intake represents a novel attractive strategy to treat gut-brain axis disorders such as IBS and depression.

Keywords

Gut-brain axis IBS Depression Anxiety Probiotics Prebiotics 

Notes

Acknowledgements

This work was supported by NIH 1R01AT009365-01 (MGG), 5R21MH108154-01 (MGG).

Compliance with Ethical Standards

Conflict of Interest

Matteo Pusceddu, Kaitlin Murray, and Melanie Gareau declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    •• Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40.  https://doi.org/10.1016/j.cell.2016.01.013. This study provides the most updated description of the ratio between the number of bacteria and human cells in our bodies. CrossRefPubMedGoogle Scholar
  2. 2.
    Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin N Am. 2017;46(1):77–89.  https://doi.org/10.1016/j.gtc.2016.09.007.CrossRefGoogle Scholar
  3. 3.
    Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115–8.  https://doi.org/10.1126/science.1058709.CrossRefPubMedGoogle Scholar
  4. 4.
    Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20.  https://doi.org/10.1126/science.1104816.CrossRefPubMedGoogle Scholar
  5. 5.
    Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69.  https://doi.org/10.1038/nri2710.CrossRefPubMedGoogle Scholar
  6. 6.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.  https://doi.org/10.1126/science.1223813.CrossRefPubMedGoogle Scholar
  7. 7.
    Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9.  https://doi.org/10.1038/nature11552.CrossRefPubMedGoogle Scholar
  8. 8.
    Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.  https://doi.org/10.1016/j.tins.2013.01.005.CrossRefPubMedGoogle Scholar
  9. 9.
    Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735–42.  https://doi.org/10.1038/nrmicro2876.CrossRefPubMedGoogle Scholar
  10. 10.
    Gareau MG. Microbiota-gut-brain axis and cognitive function. Adv Exp Med Biol. 2014;817:357–71.  https://doi.org/10.1007/978-1-4939-0897-4_16.CrossRefPubMedGoogle Scholar
  11. 11.
    Gareau MG. Cognitive function and the microbiome. Int Rev Neurobiol. 2016;131:227–46.  https://doi.org/10.1016/bs.irn.2016.08.001.CrossRefPubMedGoogle Scholar
  12. 12.
    Moloney RD, Johnson AC, O'Mahony SM, Dinan TG, Greenwood-van Meerveld B, Cryan JF. Stress and the microbiota-gut-brain axis in visceral pain: relevance to irritable bowel syndrome. CNS Neurosci Ther. 2016;22(2):102–17.  https://doi.org/10.1111/cns.12490.CrossRefPubMedGoogle Scholar
  13. 13.
    Pusceddu MM, El Aidy S, Crispie F, O’Sullivan O, Cotter P, Stanton C, et al. N-3 polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the gut microbiota. PLoS One. 2015;10(10):e0139721.  https://doi.org/10.1371/journal.pone.0139721.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Emge JR, Huynh K, Miller EN, Kaur M, Reardon C, Barrett KE, et al. Modulation of the microbiota-gut-brain axis by probiotics in a murine model of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2016;310(11):G989–98.  https://doi.org/10.1152/ajpgi.00086.2016.CrossRefPubMedGoogle Scholar
  15. 15.
    Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010;7(9):503–14.  https://doi.org/10.1038/nrgastro.2010.117.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.  https://doi.org/10.1016/j.bbi.2015.03.016.CrossRefPubMedGoogle Scholar
  17. 17.
    •• Kelly JR, Borre Y, OB C, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–18.  https://doi.org/10.1016/j.jpsychires.2016.07.019. This study shows that faecal microbiota transplantation from depressed patients into rodents can induce certain features characteristic of depression in the recipient animals. CrossRefPubMedGoogle Scholar
  18. 18.
    Singh VP, Sharma J, Babu S, Rizwanulla, Singla A. Role of probiotics in health and disease: a review. J Pak Med Assoc. 2013;63(2):253–7.PubMedGoogle Scholar
  19. 19.
    O'Mahony L, McCarthy J, Kelly P, et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology. 2005;128(3):541–51.  https://doi.org/10.1053/j.gastro.2004.11.050.CrossRefPubMedGoogle Scholar
  20. 20.
    Whorwell PJ, Altringer L, Morel J, Bond Y, Charbonneau D, O'Mahony L, et al. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol. 2006;101(7):1581–90.  https://doi.org/10.1111/j.1572-0241.2006.00734.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Agrawal A, Houghton LA, Morris J, et al. Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment Pharmacol Ther. 2009;29(1):104–14.  https://doi.org/10.1111/j.1365-2036.2008.03853.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Guyonnet D, Chassany O, Ducrotte P, et al. Effect of a fermented milk containing Bifidobacterium animalis DN-173 010 on the health-related quality of life and symptoms in irritable bowel syndrome in adults in primary care: a multicentre, randomized, double-blind, controlled trial. Aliment Pharmacol Ther. 2007;26(3):475–86.  https://doi.org/10.1111/j.1365-2036.2007.03362.x.CrossRefPubMedGoogle Scholar
  23. 23.
    Roberts LM, McCahon D, Holder R, Wilson S, Hobbs FDR. A randomised controlled trial of a probiotic “functional food” in the management of irritable bowel syndrome. BMC Gastroenterol. 2013;13(1):45.  https://doi.org/10.1186/1471-230X-13-45.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ducrotte P, Sawant P, Jayanthi V. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. World J Gastroenterol. 2012;18(30):4012–8.  https://doi.org/10.3748/wjg.v18.i30.4012.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nobaek S, Johansson ML, Molin G, Ahrne S, Jeppsson B. Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am J Gastroenterol. 2000;95(5):1231–8.  https://doi.org/10.1111/j.1572-0241.2000.02015.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Sinn DH, Song JH, Kim HJ, Lee JH, Son HJ, Chang DK, et al. Therapeutic effect of Lactobacillus acidophilus-SDC 2012, 2013 in patients with irritable bowel syndrome. Dig Dis Sci. 2008;53(10):2714–8.  https://doi.org/10.1007/s10620-007-0196-4.CrossRefPubMedGoogle Scholar
  27. 27.
    Niv E, Naftali T, Hallak R, et al. The efficacy of Lactobacillus reuteri ATCC 55730 in the treatment of patients with irritable bowel syndrome—a double blind, placebo-controlled, randomized study. Clin Nutr. 2005;24(6):925–31.  https://doi.org/10.1016/j.clnu.2005.06.001.CrossRefPubMedGoogle Scholar
  28. 28.
    Gawronska A, Dziechciarz P, Horvath A, et al. A randomized double-blind placebo-controlled trial of Lactobacillus GG for abdominal pain disorders in children. Aliment Pharmacol Ther. 2007;25(2):177–84.  https://doi.org/10.1111/j.1365-2036.2006.03175.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Francavilla R, Miniello V, Magista AM, de Canio A, Bucci N, Gagliardi F, et al. A randomized controlled trial of Lactobacillus GG in children with functional abdominal pain. Pediatrics. 2010;126(6):e1445–52.  https://doi.org/10.1542/peds.2010-0467.CrossRefPubMedGoogle Scholar
  30. 30.
    Bauserman M, Michail S. The use of Lactobacillus GG in irritable bowel syndrome in children: a double-blind randomized control trial. J Pediatr. 2005;147(2):197–201.  https://doi.org/10.1016/j.jpeds.2005.05.015.CrossRefPubMedGoogle Scholar
  31. 31.
    Enck P, Zimmermann K, Menke G, Klosterhalfen S. Randomized controlled treatment trial of irritable bowel syndrome with a probiotic E.-coli preparation (DSM17252) compared to placebo. Z Gastroenterol. 2014;52(1):64.  https://doi.org/10.1055/s-0034-1366796.CrossRefPubMedGoogle Scholar
  32. 32.
    Kajander K, Hatakka K, Poussa T, et al. A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6-month intervention. Aliment Pharmacol Ther. 2005;22(5):387–94.  https://doi.org/10.1111/j.1365-2036.2005.02579.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Kajander K, Myllyluoma E, Rajilic-Stojanovic M, et al. Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther. 2008;27(1):48–57.  https://doi.org/10.1111/j.1365-2036.2007.03542.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Ki Cha B, Mun Jung S, Hwan Choi C, Song ID, Woong Lee H, Joon Kim H, et al. The effect of a multispecies probiotic mixture on the symptoms and fecal microbiota in diarrhea-dominant irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J Clin Gastroenterol. 2012;46(3):220–7.  https://doi.org/10.1097/MCG.0b013e31823712b1.CrossRefPubMedGoogle Scholar
  35. 35.
    Michail S, Kenche H. Gut microbiota is not modified by randomized, double-blind, placebo-controlled trial of VSL#3 in diarrhea-predominant irritable bowel syndrome. Probiotics Antimicrob Proteins. 2011;3(1):1–7.  https://doi.org/10.1007/s12602-010-9059-y.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kim HJ, Camilleri M, McKinzie S, et al. A randomized controlled trial of a probiotic, VSL#3, on gut transit and symptoms in diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2003;17(7):895–904.  https://doi.org/10.1046/j.1365-2036.2003.01543.x.CrossRefPubMedGoogle Scholar
  37. 37.
    Kim HJ, Vazquez Roque MI, Camilleri M, et al. A randomized controlled trial of a probiotic combination VSL# 3 and placebo in irritable bowel syndrome with bloating. Neurogastroenterol Motility. 2005;17(5):687–96.  https://doi.org/10.1111/j.1365-2982.2005.00695.x. CrossRefGoogle Scholar
  38. 38.
    Kim SE, Choi SC, Park KS, Park MI, Shin JE, Lee TH, et al. Change of fecal flora and effectiveness of the short-term VSL#3 probiotic treatment in patients with functional constipation. J Neurogastroenterol Motil. 2015;21(1):111–20.  https://doi.org/10.5056/jnm14048.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Guandalini S, Magazzu G, Chiaro A, et al. VSL#3 improves symptoms in children with irritable bowel syndrome: a multicenter, randomized, placebo-controlled, double-blind, crossover study. J Pediatr Gastroenterol Nutr. 2010;51(1):24–30.  https://doi.org/10.1097/MPG.0b013e3181ca4d95.CrossRefPubMedGoogle Scholar
  40. 40.
    Paineau D, Payen F, Panserieu S, Coulombier G, Sobaszek A, Lartigau I, et al. The effects of regular consumption of short-chain fructo-oligosaccharides on digestive comfort of subjects with minor functional bowel disorders. Br J Nutr. 2008;99(2):311–8.  https://doi.org/10.1017/S000711450779894X. CrossRefPubMedGoogle Scholar
  41. 41.
    Silk DB, Davis A, Vulevic J, et al. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther. 2009;29(5):508–18.  https://doi.org/10.1111/j.1365-2036.2008.03911.x.CrossRefPubMedGoogle Scholar
  42. 42.
    Segal HE, Gresso WE, Thiemanun W. Longitudinal malaria studies in rural Northeast Thailand. Chloroquine treatment of falciparum malaria infections. Trop Geogr Med. 1975;27(2):160–4.PubMedGoogle Scholar
  43. 43.
    Olesen M, Gudmand-Hoyer E. Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am J Clin Nutr. 2000;72(6):1570–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015;48:258–64.  https://doi.org/10.1016/j.bbi.2015.04.003.CrossRefPubMedGoogle Scholar
  45. 45.
    Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2011;2(4):256–61.  https://doi.org/10.4161/gmic.2.4.16108.CrossRefPubMedGoogle Scholar
  46. 46.
    Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PWJ. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology. 2015;232(10):1793–801.  https://doi.org/10.1007/s00213-014-3810-0.CrossRefPubMedGoogle Scholar
  47. 47.
    Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394–401, 401 e1–4.  https://doi.org/10.1053/j.gastro.2013.02.043.CrossRefPubMedGoogle Scholar
  48. 48.
    •• Takada M, Nishida K, Kataoka-Kato A, Gondo Y, Ishikawa H, Suda K, et al. Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models. Neurogastroenterol Motil. 2016;28(7):1027–36.  https://doi.org/10.1111/nmo.12804. This study shows that probiotics play a pivotal role in the regulation of the stress response both in rats and humans. CrossRefPubMedGoogle Scholar
  49. 49.
    Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition. 2016;32(3):315–20.  https://doi.org/10.1016/j.nut.2015.09.003.CrossRefPubMedGoogle Scholar
  50. 50.
    Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, et al. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009;1(1):6.  https://doi.org/10.1186/1757-4749-1-6.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hilimire MR, DeVylder JE, Forestell CA. Fermented foods, neuroticism, and social anxiety: an interaction model. Psychiatry Res. 2015;228(2):203–8.  https://doi.org/10.1016/j.psychres.2015.04.023.CrossRefPubMedGoogle Scholar
  52. 52.
    Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105(5):755–64.  https://doi.org/10.1017/S0007114510004319. CrossRefPubMedGoogle Scholar
  53. 53.
    Griffith JP, Zarrouf FA. A systematic review of chronic fatigue syndrome: don’t assume it’s depression. Prim Care Companion J Clin Psychiatry. 2008;10(2):120–8.  https://doi.org/10.4088/PCC.v10n0206.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.  https://doi.org/10.1073/pnas.1102999108.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut. 2007;56(11):1522–8.  https://doi.org/10.1136/gut.2006.117176.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37(11):1885–95.  https://doi.org/10.1016/j.psyneuen.2012.03.024.CrossRefPubMedGoogle Scholar
  57. 57.
    Smith CJ, Emge JR, Berzins K, Lung L, Khamishon R, Shah P, et al. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. Am J Physiol Gastrointest Liver Physiol. 2014;307(8):G793–802.  https://doi.org/10.1152/ajpgi.00238.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Laval L, Martin R, Natividad JN, Chain F, Miquel S, de Maredsous CD, et al. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes. 2015;6(1):1–9.  https://doi.org/10.4161/19490976.2014.990784.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Palomar MM, Maldonado Galdeano C, Perdigon G. Influence of a probiotic lactobacillus strain on the intestinal ecosystem in a stress model mouse. Brain Behav Immun. 2014;35:77–85.  https://doi.org/10.1016/j.bbi.2013.08.015.CrossRefPubMedGoogle Scholar
  60. 60.
    Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC, et al. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-beta levels in male mice. Brain Behav Immun. 2016;52:120–31.  https://doi.org/10.1016/j.bbi.2015.10.007.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry. 2017;82(7):472–87.  https://doi.org/10.1016/j.biopsych.2016.12.031.CrossRefPubMedGoogle Scholar
  62. 62.
    Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4):1179–88.  https://doi.org/10.1016/j.neuroscience.2010.08.005.CrossRefPubMedGoogle Scholar
  63. 63.
    Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13(1):35–7.  https://doi.org/10.1038/nm1521.CrossRefPubMedGoogle Scholar
  64. 64.
    Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motility. 2011;23(12):1132–9.  https://doi.org/10.1111/j.1365-2982.2011.01796.x. CrossRefGoogle Scholar
  65. 65.
    Lyte M. Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Biol. 2014;817:3–24.  https://doi.org/10.1007/978-1-4939-0897-4_1. CrossRefPubMedGoogle Scholar
  66. 66.
    Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 2004;279(39):40545–59.  https://doi.org/10.1074/jbc.M402229200.CrossRefPubMedGoogle Scholar
  67. 67.
    Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci. 2003;23(28):9418–27.PubMedGoogle Scholar
  68. 68.
    Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A. 2011;108(19):8030–5.  https://doi.org/10.1073/pnas.1016088108.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, de Noni I, et al. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr. 2014;144(11):1787–96.  https://doi.org/10.3945/jn.114.197723.CrossRefPubMedGoogle Scholar
  70. 70.
    Kato K, Mizuno S, Umesaki Y, Ishii Y, Sugitani M, Imaoka A, et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther. 2004;20(10):1133–41.  https://doi.org/10.1111/j.1365-2036.2004.02268.x.CrossRefPubMedGoogle Scholar
  71. 71.
    Distrutti E, Monaldi L, Ricci P, Fiorucci S. Gut microbiota role in irritable bowel syndrome: new therapeutic strategies. World J Gastroenterol. 2016;22(7):2219–41.  https://doi.org/10.3748/wjg.v22.i7.2219.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anatomy, Physiology and Cell Biology, School of Veterinary MedicineUniversity of California DavisDavisUSA

Personalised recommendations