Advertisement

Current Pathobiology Reports

, Volume 6, Issue 1, pp 29–34 | Cite as

Regional Control of Regulatory Immune Cells in the Intestine

  • Tina L. Morhardt
  • Atsushi Hayashi
  • John Y. Kao
  • Nobuhiko Kamada
Microbiome and Tissue Homeostasis (AS Neish and R Jones, Section Editors)
  • 175 Downloads
Part of the following topical collections:
  1. Topical Collection on Microbiome and Tissue Homeostasis

Abstract

Purpose of Review

The intestine contains the largest compartment of immune regulatory cells which include T regulatory cells and IL-10-producing macrophages. These cell populations serve to restrain unnecessary immune responses of the intestine, which may lead to the pathogenesis of Crohn’s disease or food allergy.

Recent Findings

This review discusses the recent findings pertaining to the functional regulation of these cells which may provide insight into novel therapies. Both T regulatory cells and macrophages are regulated in microbiota-dependent and microbiota-independent manners, i.e., dietary antigens. Often, this is specific to regional specialization and environment in small intestine vs. colon.

Summary

These immune regulatory cells are largely regulated by microbiota in the colon, whereas in the small intestine, the microbiota has less affect, as seen in germ-free mouse studies. Targeting these cells in their specific compartments may direct future treatment modalities for inflammatory bowel disease as ulcerative colitis and Crohn’s are vastly different diseases.

Keywords

Gut immune system Regulatory T cells Macrophages Interleukin-10 Gut microbiota Dietary antigen 

Notes

Funding Information

This work was supported by NIH T32 DK094775 (T.L.M.), DK110146 and DK108901 (N.K.).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

T.L.M, J.Y.K, and N.K. have no financial conflicts of interest. A.H. is employed by Miyarisan Pharmaceutical Co., Ltd.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500.  https://doi.org/10.1038/nri2785.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86.  https://doi.org/10.1084/jem.20030152.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.  https://doi.org/10.1126/science.1198469.CrossRefPubMedGoogle Scholar
  4. 4.
    Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity. 2011;34(5):794–806.  https://doi.org/10.1016/j.immuni.2011.03.021.CrossRefPubMedGoogle Scholar
  5. 5.
    Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol. 2016;16(5):295–309.  https://doi.org/10.1038/nri.2016.36.CrossRefPubMedGoogle Scholar
  6. 6.
    Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science. 2015;349(6251):989–93.  https://doi.org/10.1126/science.aac4263.CrossRefPubMedGoogle Scholar
  7. 7.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. T induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6.  https://doi.org/10.1038/nature12331.CrossRefPubMedGoogle Scholar
  8. 8.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.  https://doi.org/10.1126/science.1241165.CrossRefPubMedGoogle Scholar
  9. 9.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.  https://doi.org/10.1038/nature12721.CrossRefPubMedGoogle Scholar
  10. 10.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.  https://doi.org/10.1038/nature12726.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015;8(1):80–93.  https://doi.org/10.1038/mi.2014.44.CrossRefPubMedGoogle Scholar
  12. 12.
    Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.  https://doi.org/10.1073/pnas.0909122107.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332(6032):974–7.  https://doi.org/10.1126/science.1206095.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Di Giacinto C, Marinaro M, Sanchez M, Strober W, Boirivant M. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J Immunol. 2005;174(6):3237–46.  https://doi.org/10.4049/jimmunol.174.6.3237.CrossRefPubMedGoogle Scholar
  15. 15.
    Tang C, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, et al. Inhibition of dectin-1 signaling ameliorates colitis by inducing lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe. 2015;18(2):183–97.  https://doi.org/10.1016/j.chom.2015.07.003.CrossRefPubMedGoogle Scholar
  16. 16.
    • Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343(6178):1249288. This study describes microbiota-dependent regulatory control of colonic Tregs by macrophages and dendritic cells by way of cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by RORɣt+ type 3 innate lymphoid cells.  https://doi.org/10.1126/science.1249288.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14(10):667–85.  https://doi.org/10.1038/nri3738.CrossRefPubMedGoogle Scholar
  18. 18.
    Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.  https://doi.org/10.1136/gut.28.10.1221.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    •• Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG, et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science. 2016;351(6275):858–863. This study demonstrated microbiota-independent dietary antigens that are required for the induction of peripheral Tregs in the small intestine.  https://doi.org/10.1126/science.aac5560.CrossRefPubMedGoogle Scholar
  20. 20.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757–64.  https://doi.org/10.1084/jem.20070590.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. Retinoic acid imprints gut-homing specificity on T cells. Immunity. 2004;21(4):527–38.  https://doi.org/10.1016/j.immuni.2004.08.011.CrossRefPubMedGoogle Scholar
  22. 22.
    Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med. 2007;204(8):1775–85.  https://doi.org/10.1084/jem.20070602.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hill JA, Hall JA, Sun CM, Cai Q, Ghyselinck N, Chambon P, et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity. 2008;29(5):758–70.  https://doi.org/10.1016/j.immuni.2008.09.018.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kang SW, Kim SH, Lee N, Lee WW, Hwang KA, Shin MS, et al. 1,25-Dihyroxyvitamin D3 promotes FOXP3 expression via binding to vitamin D response elements in its conserved noncoding sequence region. J Immunol. 2012;188(11):5276–82.  https://doi.org/10.4049/jimmunol.1101211.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kinoshita M, Kayama H, Kusu T, Yamaguchi T, Kunisawa J, Kiyono H, et al. Dietary folic acid promotes survival of Foxp3+ regulatory T cells in the colon. J Immunol. 2012;189(6):2869–78.  https://doi.org/10.4049/jimmunol.1200420.CrossRefPubMedGoogle Scholar
  26. 26.
    Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–74.  https://doi.org/10.1016/0092-8674(93)80068-P.CrossRefPubMedGoogle Scholar
  27. 27.
    Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66(11):5224–31.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim SC, Tonkonogy SL, Albright CA, Tsang J, Balish EJ, Braun J, et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 2005;128(4):891–906.  https://doi.org/10.1053/j.gastro.2005.02.009.CrossRefPubMedGoogle Scholar
  29. 29.
    Cerovic V, Bain CC, Mowat AM, Milling SWF. Intestinal macrophages and dendritic cells: what's the difference? Trends Immunol. 2014;35(6):270–7.  https://doi.org/10.1016/j.it.2014.04.003.CrossRefPubMedGoogle Scholar
  30. 30.
    Denning TL, Wang YC, Patel SR, et al. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol. 2007;8(10):1086–94.  https://doi.org/10.1038/ni1511.CrossRefPubMedGoogle Scholar
  31. 31.
    Denning TL, Norris BA, Medina-Contreras O, Manicassamy S, Geem D, Madan R, et al. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J Immunol. 2011;187(2):733–47.  https://doi.org/10.4049/jimmunol.1002701.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rivollier A, He J, Kole A, Valatas V, Kelsall BL. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med. 2012;209(1):139–55.  https://doi.org/10.1084/jem.20101387.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest. 2005;115(1):66–75.  https://doi.org/10.1172/JCI200519229.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kamada N, Hisamatsu T, Okamoto S, Sato T, Matsuoka K, Arai K, et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J Immunol. 2005;175(10):6900–8.  https://doi.org/10.4049/jimmunol.175.10.6900.CrossRefPubMedGoogle Scholar
  35. 35.
    Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P, Suzuki S, et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol. 2012;13(5):449–56.  https://doi.org/10.1038/ni.2263.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol. 2009;10(11):1178–84.  https://doi.org/10.1038/ni.1791.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity. 2011;34(2):237–46.  https://doi.org/10.1016/j.immuni.2011.01.016.CrossRefPubMedGoogle Scholar
  38. 38.
    •• Bain CC, Bravo-Blas A, Scott CL, Gomez Perdiguero E, Geissmann F, Henri S, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol. 2014;15(10):929–937. This study describes the constant replenishment of macrophages in the colon to be reliant on circulating monocytes and microbiota.  https://doi.org/10.1038/ni.2967.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    • Ochi T, Feng Y, Kitamoto S, Nagao-Kitamoto H, Kuffa P, Atarashi K, et al. Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine. Sci Rep. 2016;6(1):27634. This study shows that microbiota is not necessary to induce small intestine IL-10 macrophages.  https://doi.org/10.1038/srep27634.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ueda Y, Kayama H, Jeon SG, Kusu T, Isaka Y, Rakugi H, et al. Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. Int Immunol. 2010;22(12):953–62.  https://doi.org/10.1093/intimm/dxq449.CrossRefPubMedGoogle Scholar
  41. 41.
    Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, et al. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe. 2013;13(6):711–22.  https://doi.org/10.1016/j.chom.2013.05.013.CrossRefPubMedGoogle Scholar
  42. 42.
    •• Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128–139. This study showed the relationship between microbial metabolite butyrate and niacin and their receptor GPR109A on colonic macrophages and dendritic cells to promote differentiation of Treg cells and IL-10-producing cells.  https://doi.org/10.1016/j.immuni.2013.12.007.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tina L. Morhardt
    • 1
  • Atsushi Hayashi
    • 2
    • 3
  • John Y. Kao
    • 2
  • Nobuhiko Kamada
    • 2
  1. 1.Division of Pediatric Gastroenterology, Hepatology and NutritionUniversity of MichiganAnn ArborUSA
  2. 2.Division of Gastroenterology, Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  3. 3.Miyarisan Pharmaceutical Co., Ltd., Research LaboratoryTokyoJapan

Personalised recommendations