Skip to main content

Advertisement

Log in

Xenopus Nerve-Muscle Cultures: a Novel Cell-Based Assay for Serological Diagnosis and Pathological Research of Myasthenia Gravis

  • Xenopus and Zebrafish Models for Pathobiology (W Goessling and A Zorn, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

At present, the most common diagnostic measures for the autoimmune neuromuscular disease myasthenia gravis (MG) are radioimmunoprecipitation assay (RIPA), enzyme-linked immunosorbent assay (ELISA), and cell-based assay (CBA). Considering the pitfalls of these diagnostic assays, this review describes the advantages of using Xenopus tissue cultures for MG diagnosis and research.

Recent Findings

Our recent study described a novel CBA involving Xenopus tissue cultures for MG serological diagnosis. Moreover, this CBA can potentially be applied to elucidate the pathogenic mechanisms underlying acetylcholine receptor endocytosis and degradation and to develop and validate potential therapeutic strategies for MG.

Summary

Although most CBAs are relatively labor intensive, Xenopus CBA is a promising tool for the initial clinical serological diagnosis and for the pathological research of MG. The future studies will be devoted to gain a better understanding of the etiology of MG and to provide a therapeutic intervention for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Danilchick M, Peng HB, Kay BK (1991) Xenopus laevis: practical uses in cell and molecular biology. Pictorial collage of embryonic stages. Methods Cell Biol 36:679–681

    Article  CAS  PubMed  Google Scholar 

  2. Beck CW, Slack JM (2001) An amphibian with ambition: a new role for Xenopus in the 21st century. Genome Biol 2(10):reviews1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peng HB, Baker LP, Chen Q (1991) Tissue culture of Xenopus neurons and muscle cells as a model for studying synaptic induction. Methods Cell Biol 36:511–526

    Article  CAS  PubMed  Google Scholar 

  4. Cohen MW (1980) Development of an amphibian neuromuscular junction in vivo and in culture. J Exp Biol 89:43–56

    CAS  PubMed  Google Scholar 

  5. Lee CW, Han J, Bamburg JR et al (2009) Regulation of acetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking. Nat Neurosci 12(7):848–856. doi:10.1038/nn.2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Proszynski TJ, Gingras J, Valdez G et al (2009) Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc Natl Acad Sci U S A 106(43):18373–18378. doi:10.1073/pnas.0910391106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. • Gilhus NE, Skeie GO, Romi F et al (2016) Myasthenia gravis—autoantibody characteristics and their implications for therapy. Nat Rev Neurol 12(5):259–268. doi:10.1038/nrneurol.2016.44 This paper provides an extensive review on the pathophysiology of different autoantibodies in MG and on different therapeutic approaches to MG treatment.

    Article  CAS  PubMed  Google Scholar 

  8. Lindstrom JM (2000) Acetylcholine receptors and myasthenia. Muscle Nerve 23(4):453–477. doi:10.1002/(SICI)1097-4598(200004)23:4<453::AID-MUS3>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  9. Higuchi O, Hamuro J, Motomura M et al (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69(2):418–422. doi:10.1002/ana.22312

    Article  CAS  PubMed  Google Scholar 

  10. Hoch W, McConville J, Helms S et al (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7(3):365–368. doi:10.1038/85520

    Article  CAS  PubMed  Google Scholar 

  11. Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442. doi:10.1146/annurev.neuro.22.1.389

    Article  CAS  PubMed  Google Scholar 

  12. Harrison RG 1907. Observations on the living developing nerve fiber. Anat Rec.:116–28

  13. Anderson MJ, Cohen MW, Zorychta E (1977) Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells. J Physiol 268(3):731–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson MJ, Cohen MW (1977) Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol 268(3):757–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie ZP, Poo MM (1986) Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. Proc Natl Acad Sci U S A 83(18):7069–7073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Missias AC, Chu GC, Klocke BJ et al (1996) Maturation of the acetylcholine receptor in skeletal muscle: regulation of the AChR gamma-to-epsilon switch. Dev Biol 179(1):223–238. doi:10.1006/dbio.1996.0253

    Article  CAS  PubMed  Google Scholar 

  17. Kummer TT, Misgeld T, Lichtman JW et al (2004) Nerve-independent formation of a topologically complex postsynaptic apparatus. J Cell Biol 164(7):1077–1087. doi:10.1083/jcb.200401115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2(11):791–805. doi:10.1038/35097557

    Article  CAS  PubMed  Google Scholar 

  19. Kim N, Stiegler AL, Cameron TO et al (2008) Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell 135(2):334–342. doi:10.1016/j.cell.2008.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang B, Luo S, Wang Q et al (2008) LRP4 serves as a coreceptor of agrin. Neuron 60(2):285–297. doi:10.1016/j.neuron.2008.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi KR, Berrera M, Reischl M et al (2012) Rapsyn mediates subsynaptic anchoring of PKA type I and stabilisation of acetylcholine receptor in vivo. J Cell Sci 125(Pt 3):714–723. doi:10.1242/jcs.092361

    Article  CAS  PubMed  Google Scholar 

  22. Dai Z, Peng HB (1998) A role of tyrosine phosphatase in acetylcholine receptor cluster dispersal and formation. J Cell Biol 141(7):1613–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geng L, Qian YK, Madhavan R et al (2008) Transmembrane mechanisms in the assembly of the postsynaptic apparatus at the neuromuscular junction. Chem Biol Interact 175(1–3):108–112. doi:10.1016/j.cbi.2008.04.017

    Article  CAS  PubMed  Google Scholar 

  24. Martinez - Pena Y Valenzuela I, Mouslim C, Akaaboune M (2010) Calcium/calmodulin kinase II-dependent acetylcholine receptor cycling at the mammalian neuromuscular junction in vivo. J Neurosci 30(37):12455–12465. doi:10.1523/JNEUROSCI.3309-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Connolly JA, Oldfin BV (1985) Microtubules and the formation of acetylcholine receptor clusters in chick embryonic muscle cells. Eur J Cell Biol 39(1):173–178

    CAS  PubMed  Google Scholar 

  26. Dai Z, Luo X, Xie H et al (2000) The actin-driven movement and formation of acetylcholine receptor clusters. J Cell Biol 150(6):1321–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cartaud A, Stetzkowski-Marden F, Maoui A et al (2011) Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization. Biol Cell 103(6):287–301. doi:10.1042/BC20110018

    Article  CAS  PubMed  Google Scholar 

  28. Apel ED, Roberds SL, Campbell KP et al (1995) Rapsyn may function as a link between the acetylcholine receptor and the agrin-binding dystrophin-associated glycoprotein complex. Neuron 15(1):115–126

    Article  CAS  PubMed  Google Scholar 

  29. Basu S, Sladecek S, Martinez de la Pena y Valenzuela I et al (2015) CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5beta and actin for focal delivery of acetylcholine receptor vesicles. Mol Biol Cell 26(5):938–951. doi:10.1091/mbc.E14-06-1158

  30. Leite MI, Jacob S, Viegas S et al (2008) IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis. Brain 131(Pt 7):1940–1952. doi:10.1093/brain/awn092

    Article  PubMed  PubMed Central  Google Scholar 

  31. • Phillips WD, Vincent A 2016. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Res.;5. doi:10.12688/f1000research.8206.1. This review paper evaluates the clinical conditions and pathogenic mechanisms of different subsets of MG patients in relationship to their distinct target specificities and isotypes of autoantibodies.

  32. Cole RN, Ghazanfari N, Ngo ST et al (2010) Patient autoantibodies deplete postsynaptic muscle-specific kinase leading to disassembly of the ACh receptor scaffold and myasthenia gravis in mice. J Physiol 588(Pt 17):3217–3229. doi:10.1113/jphysiol.2010.190298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klooster R, Plomp JJ, Huijbers MG et al (2012) Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain 135(Pt 4):1081–1101. doi:10.1093/brain/aws025

    Article  PubMed  Google Scholar 

  34. Koneczny I, Cossins J, Waters P et al (2013) MuSK myasthenia gravis IgG4 disrupts the interaction of LRP4 with MuSK but both IgG4 and IgG1-3 can disperse preformed agrin-independent AChR clusters. PLoS One 8(11):e80695. doi:10.1371/journal.pone.0080695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lindstrom JM, Seybold ME, Lennon VA et al (1976) Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 26(11):1054–1059

    Article  CAS  PubMed  Google Scholar 

  36. Kawanami S, Tsuji R, Oda K (1984) Enzyme-linked immunosorbent assay for antibody against the nicotinic acetylcholine receptor in human myasthenia gravis. Ann Neurol 15(2):195–200. doi:10.1002/ana.410150214

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez Cruz PM, Al-Hajjar M, Huda S et al (2015) Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis. JAMA Neurol 72(6):642–649. doi:10.1001/jamaneurol.2015.0203

    Article  PubMed  Google Scholar 

  38. •• Rodriguez Cruz PM, Huda S, Lopez-Ruiz P et al (2015) Use of cell-based assays in myasthenia gravis and other antibody-mediated diseases. Exp Neurol 270:66–71. doi:10.1016/j.expneurol.2015.01.011 This paper reviews the principles of CBA to be used for MG diagnosis and highlights its advantages over other diagnostic assays.

    Article  CAS  PubMed  Google Scholar 

  39. •• Yeo HL, Lim JY, Fukami Y et al (2015) Using Xenopus tissue cultures for the study of myasthenia gravis pathogenesis. Dev Biol 408(2):244–251. doi:10.1016/j.ydbio.2015.02.017 This is the first study to describe the use of Xenopus tissue cultures for screening the pathogenicity of serum samples from seropositive and seronegative MG patients.

    Article  CAS  PubMed  Google Scholar 

  40. Hellsten U, Harland RM, Gilchrist MJ et al (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328(5978):633–636. doi:10.1126/science.1183670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wheeler GN, Brandli AW (2009) Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus. Dev Dyn 238(6):1287–1308. doi:10.1002/dvdy.21967

    Article  CAS  PubMed  Google Scholar 

  42. Schwab RS, Timberlake WH (1954) Pyridostigmin (mestinon) in the treatment of myasthenia gravis. N Engl J Med 251(7):271–272. doi:10.1056/NEJM195408122510706

    Article  CAS  PubMed  Google Scholar 

  43. Saperstein DS, Barohn RJ (2004) Management of myasthenia gravis. Semin Neurol 24(1):41–48. doi:10.1055/s-2004-829586

    Article  PubMed  Google Scholar 

  44. Gehi A, Benatar M, Langberg J (2008) Treatment of pyridostigmine-induced AV block with hyoscyamine in a patient with myasthenia gravis. J Cardiovasc Electrophysiol 19(2):214–216. doi:10.1111/j.1540-8167.2007.00938.x

    Article  PubMed  Google Scholar 

  45. Gardner JM, Fambrough DM (1979) Acetylcholine receptor degradation measured by density labeling: effects of cholinergic ligands and evidence against recycling. Cell 16(3):661–674

    Article  CAS  PubMed  Google Scholar 

  46. Bruneau E, Sutter D, Hume RI et al (2005) Identification of nicotinic acetylcholine receptor recycling and its role in maintaining receptor density at the neuromuscular junction in vivo. J Neurosci 25(43):9949–9959. doi:10.1523/JNEUROSCI.3169-05.2005

    Article  CAS  PubMed  Google Scholar 

  47. Bruneau EG, Akaaboune M (2006) The dynamics of recycled acetylcholine receptors at the neuromuscular junction in vivo. Development 133(22):4485–4493. doi:10.1242/dev.02619

    Article  CAS  PubMed  Google Scholar 

  48. • Lee CW, Zhang H, Geng L et al (2014) Crosslinking-induced endocytosis of acetylcholine receptors by quantum dots. PLoS One 9(2):e90187. doi:10.1371/journal.pone.0090187 This study takes advantage of the unique features of QDs and the multivalency of biotin-streptavidin interaction to mimic the cross-linking-induced AChR endocytosis in MG pathogenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ben NGG, Thomas JD, Benjamin LS et al (2005) Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat Methods 2(10):743. doi:10.1038/nmeth791

    Article  Google Scholar 

  50. Giepmans BN, Deerinck TJ, Smarr BL et al (2005) Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat Methods 2(10):743–749. doi:10.1038/nmeth791

    Article  CAS  PubMed  Google Scholar 

  51. Geng L, Zhang HL, Peng HB (2009) The formation of acetylcholine receptor clusters visualized with quantum dots. BMC Neurosci 10:80. doi:10.1186/1471-2202-10-80

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Health and Medical Research Fund (HMRF, Project No. 04151086) from the Food and Health Bureau (FHB) in Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Wai Lee.

Ethics declarations

Conflict of Interest

Zora Chui Kuen Chan and Marilyn Janice Oentaryo declare that they have no conflicts of interest. Chi Wai Lee reports grants from Food and Health Bureau (FHB), Hong Kong, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Xenopus and Zebrafish Models for Pathobiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, Z.C.K., Oentaryo, M.J. & Lee, C.W. Xenopus Nerve-Muscle Cultures: a Novel Cell-Based Assay for Serological Diagnosis and Pathological Research of Myasthenia Gravis. Curr Pathobiol Rep 5, 57–65 (2017). https://doi.org/10.1007/s40139-017-0126-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0126-x

Keywords

Navigation