Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676
PubMed
Article
CAS
Google Scholar
Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630
PubMed
Article
CAS
Google Scholar
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801
PubMed
Article
CAS
Google Scholar
Okita K, Hong H, Takahashi K, Yamanaka S (2010) Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 3:418–428
Article
Google Scholar
Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775
PubMed
Article
CAS
Google Scholar
Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R et al (2009) PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770
PubMed
Article
CAS
Google Scholar
Carey BW, Markoulaki S, Beard C, Hanna J, Jaenisch R (2010) Single-gene transgenic mouse strains for reprogramming adult somatic cells. Nat Methods 7(1):56–98
PubMed
CAS
Google Scholar
Stadtfeld MM, Maherali NN, Borkent MM, Hochedlinger KK (2010) A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods 7(1):53–55
PubMed
Article
CAS
Google Scholar
Samavarchi-Tehrani P, Golipour A, David L, Sung H-K, Beyer TA, Datti A et al (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7(1):64–77
PubMed
Article
CAS
Google Scholar
Li R, Liang J, Ni S, Zhou T, Qing X, Li H et al (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7(1):51–63
PubMed
Article
CAS
Google Scholar
Ghule PN, Medina R, Lengner CJ, Mandeville M, Qiao M, Dominski Z et al (2011) Reprogramming the pluripotent cell cycle: restoration of an abbreviated G1 phase in human induced pluripotent stem (iPS) cells. J Cell Physiol 226(5):1149–1156
PubMed
Article
CAS
Google Scholar
Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, Bernard D et al (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9(3):293–299
PubMed
Article
CAS
Google Scholar
Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28(4):721–733
PubMed
Article
CAS
Google Scholar
Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70
PubMed
Article
CAS
Google Scholar
Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2(3):230–240
PubMed
Article
CAS
Google Scholar
Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, Suh H et al (2008) Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2(2):151–159
PubMed
Article
CAS
Google Scholar
Sridharan R, Tchieu J, Mason MJ, Yachechko R, Kuoy E, Horvath S et al (2009) Role of the murine reprogramming factors in the induction of pluripotency. Cell 136(2):364–377
PubMed
Article
CAS
Google Scholar
Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM et al (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483(7391):598–602
PubMed
Article
CAS
Google Scholar
Bhutani N, Decker MN, Brady JJ, Bussat RT, Burns DM, Corbel SY et al (2013) A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J 27(3):1107–1113
PubMed
Article
CAS
Google Scholar
• Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet. 2012 Dec 2;45(1):34–42. Identifies H3K9me3 of pluripotency loci, mediated by BMP pathway acting via H3K9 methyltransferases, as a major barrier to reprogramming pre-IPSC to iPSCs
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M et al (2009) Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460(7259):1132–1135
PubMed
Article
CAS
Google Scholar
Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A et al (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460(7259):1140–1144
PubMed
Article
CAS
Google Scholar
Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S et al (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153
PubMed
Article
Google Scholar
Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M et al (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460(7259):1136–1139
PubMed
Article
CAS
Google Scholar
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM et al (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460(7259):1145–1148
PubMed
Article
CAS
Google Scholar
Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I et al (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23(18):2134–2139
PubMed
Article
CAS
Google Scholar
•• Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, et al. A molecular roadmap of reprogramming somatic cells into iPS Cells. Cell. 2012 Dec 21;151(7):1617–32. RNA-Seq analysis timecourse of purified reprogramming populations. Equivalent populations to Hansson et al. Identifies two waves of gene expression changes associated with the reprogramming process including early MET, cell cycle changes and switch from oxidative to glycolytic metabolism
•• Hansson J, Rafiee MR, Reiland S, Polo JM, Gehring J, Okawa S, et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2012 Dec 27;2(6):1579–92. Proteomics analysis of timecourse of purified reprogramming populations. Equivalent populations to Polo et al. Identifies protein up- and down-regulation in number of processes including MET, cell cycle, oxidative and glycolytic metabolism in a stage specific manner
•• Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell. 2012 Sep 14;150(6):1209–22. This article is the first to provide an in-depth look at the transcriptional changes occurring throughout reprogramming at the single cell level. It identifies early and late markers of reprogramming cells
•• Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell. 2012 Nov 21;151(5):994–1004. Comprehensive study of the binding of the four reprogramming factors during the first 48 hours of expression in human fibroblasts. Established binding is enriched at MET sites, KM bind promters, OSKM bind distal elements and knockdown of DNA methylases results in increased OSKM binding in DNA otherwise refractory to binding
Wernig M, Lengner CJ, Hanna J, Lodato MA, Steine E, Foreman R et al (2008) A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 26(8):916–924
PubMed
Article
CAS
Google Scholar
Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3(3):340–345
PubMed
Article
CAS
Google Scholar
Markoulaki S, Hanna J, Beard C, Carey BW, Cheng AW, Lengner CJ et al (2009) Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nat Biotechnol 27(2):169–171
PubMed
Article
CAS
Google Scholar
Burdsal CAC, Damsky CHC, Pedersen RAR (1993) The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak. Development 118(3):829–844
PubMed
CAS
Google Scholar
Ciruna BB, Rossant JJ (2001) FGF Signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1(1):3–13
Article
Google Scholar
White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev 1(2):131–138
PubMed
Article
CAS
Google Scholar
Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B et al (2010) Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genes Dev 20(2):155–169
CAS
Google Scholar
Ruiz S, Panopoulos AD, Herrerías A, Bissig K-D, Lutz M, Berggren WT et al (2011) A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr Biol 21(1):45–52
PubMed
Article
CAS
Google Scholar
Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP et al (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462(7273):595–601
PubMed
Article
CAS
Google Scholar
Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325(5939):435–439
PubMed
Article
CAS
Google Scholar
Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S et al (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339(6116):222–226
PubMed
Article
Google Scholar
Sassone-Corsi P (2013)When metabolism and epigenetics converge. Science 339(6116):148–150
PubMed
Article
CAS
Google Scholar
Meshorer EE, Yellajoshula DD, George EE, Scambler PJP, Brown DTD, Misteli TT (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10(1):2–12
Article
Google Scholar
Efroni SS, Duttagupta RR, Cheng JJ, Dehghani HH, Hoeppner DJD, Dash CC et al (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2(5):437–447
PubMed
Article
CAS
Google Scholar
Liang G, Taranova O, Xia K, Zhang Y (2010) Butyrate promotes induced pluripotent stem cell generation. J Biol Chem 285(33):25516–25521
PubMed
Article
CAS
Google Scholar
Mali P, Chou B-K, Yen J, Ye Z, Zou J, Dowey S et al (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28(4):713–720
PubMed
Article
CAS
Google Scholar
Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A et al (2009) Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460(7257):863–868
PubMed
CAS
Google Scholar
Ang Y-S, Tsai S-Y, Lee D-F, Monk J, Su J, Ratnakumar K et al (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145(2):5–15
Article
Google Scholar
Liang G, He J, Zhang Y (2012) Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat Cell Biol 14(5):457–466
PubMed
Article
CAS
Google Scholar
Huangfu DD, Maehr RR, Guo WW, Eijkelenboom AA, Snitow MM, Chen AEA et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26(7):795–797
PubMed
Article
CAS
Google Scholar
Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275
PubMed
Article
CAS
Google Scholar
Koche RP, Smith ZD, Adli M, Gu H, Ku M, Gnirke A et al (2011) Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8(1):96–105
PubMed
Article
CAS
Google Scholar
Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326
PubMed
Article
CAS
Google Scholar
Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560
PubMed
Article
CAS
Google Scholar
Mattout A, Biran A, Meshorer E (2011) Global epigenetic changes during somatic cell reprogramming to iPS cells. J Mol Cell Biol 3(6):341–350
PubMed
Article
Google Scholar
Mansour AA, Gafni O, Weinberger L, Zviran A, Ayyash M, Rais Y et al (2012) The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488(7411):409–413
PubMed
Article
CAS
Google Scholar
Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454(7200):49–55
PubMed
Article
CAS
Google Scholar
Pawlak M, Jaenisch R (2011) De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes Dev 25(10):1035–1040
PubMed
Article
CAS
Google Scholar
Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R et al (2012) Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488(7413):652–655
PubMed
Article
CAS
Google Scholar
• Kurian L, Sancho-Martinez I, Nivet E, Aguirre A, Moon K, Pendaries C, et al. Conversion of human fibroblasts to angioblast-like progenitor cells. Nature methods. 2013 Jan;10(1):77–83. Demonstrates cells exposed to reprogramming factors obtain plasticity and ability to transdifferentiate before the establishment of pluripotency. Findings have implications for epigenetic status of reprogramming cells
Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. Goodell MA, editor. PLoS Biol 6(10):e253
PubMed
Article
Google Scholar
Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D et al (2009) A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing nanog. Cell Stem Cell 5(5):491–503
PubMed
Article
CAS
Google Scholar
•• Golipour A, David L, Liu Y, Jayakumaran G, Hirsch CL, Trcka D, et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell. 2012 Dec 7;11(6):769–82. This article reports on the regulatory network that controls completion of pluripotency
Martello G, Sugimoto T, Diamanti E, Joshi A, Hannah R, Ohtsuka S et al (2012) Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell 11(4):491–504
PubMed
Article
CAS
Google Scholar
Festuccia N, Osorno R, Halbritter F, Karwacki-Neisius V, Navarro P, Colby D et al (2012) Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells. Cell Stem Cell 11(4):477–490
PubMed
Article
CAS
Google Scholar