Skip to main content

Advertisement

Log in

The Toxicity of Newer and Lesser-Known Anticonvulsant Drugs

  • Acute Care Pharmacology and Toxicology (A King, Section Editor)
  • Published:
Current Emergency and Hospital Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review describes newer and lesser-known anticonvulsant drugs. Due to increased diagnostic accuracy of seizure disorder subtypes, as well as escalating off-label and experimental usage, these agents are becoming more commonplace. Important mechanisms of action, pharmacokinetics/pharmacodynamics, critical medication interactions, adverse reactions, toxicities, and treatment strategies are discussed.

Recent Findings

Cenobamate, clobazam, eslicarbazepine, ethosuximide, everolimus, felbamate, lacosamide, perampanel, methsuximide, levetiracetam (and the related compound brivaracetam), rufinamide, stiripentol, vigabatrin, and zonisamide are reviewed. As with much in medical toxicology, data and recommendations are derived mainly from physiology bench research, case studies, and expert opinion.

Summary

Anticonvulsants are a heterogeneous group of drugs, with newer and lesser-known agents increasing in prominence. These drugs have varied and unique mechanisms of action and toxicities, with which clinicians should be familiar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Vernillet L, Greene SA, Kamin M. Pharmacokinetics of cenobamate: results from single and multiple oral ascending-dose studies in healthy subjects. Clin Pharmacol Drug Dev. 2020;9(4):428–43. https://doi.org/10.1002/cpdd.769.

    Article  CAS  PubMed  Google Scholar 

  2. Vernillet L, Greene SA, Kim HW, Melnick SM, Glenn K. Mass balance, metabolism, and excretion of cenobamate, a new antiepileptic drug, after a single oral administration in healthy male subjects. Eur J Drug Metab Pharmacokinet. 2020;45:513–22. https://doi.org/10.1007/s13318-020-00615-7.

    Article  CAS  PubMed  Google Scholar 

  3. Keam SJ. Cenobamate: first approval. Drugs. 2020;80(1):73–8. https://doi.org/10.1007/s40265-019-01250-6.

    Article  CAS  PubMed  Google Scholar 

  4. Krauss GL, Klein P, Brandt C, Lee SK, Milanov I, Milovanovic M, et al. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: a multicentre, double-blind, randomised, placebo-controlled, dose-response trial [published correction appears in Lancet Neurol 2020 Mar;19(3):e3]. Lancet Neurol. 2020;19(1):38–48. https://doi.org/10.1016/S1474-4422(19)30399-0.

    Article  CAS  PubMed  Google Scholar 

  5. Giraud C, Tran A, Rey E, Vincent J, Tréluyer JM, Pons G. In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug Metab Dispos. 2004;32(11):1279–86.

    Article  CAS  Google Scholar 

  6. Russell GR, Phelps SJ, Shelton CM, Wheless JW. Impact of drug interactions on clobazam and N-desmethylclobazam concentrations in pediatric patients with epilepsy. Ther Drug Monit. 2018;40(4):452–62. https://doi.org/10.1097/FTD.0000000000000530.

    Article  CAS  PubMed  Google Scholar 

  7. Tolbert D, Harris SI, Bekersky I, Lee D, Isojarvi J. Withdrawal-related adverse events from clinical trials of clobazam in Lennox-Gastaut syndrome. Epilepsy Behav. 2014;37:11–5. https://doi.org/10.1016/j.yebeh.2014.05.016.

    Article  PubMed  Google Scholar 

  8. Patsalos PN, Zugman M, Lake C, James A, Ratnaraj N, Sander JW. Serum protein binding of 25 antiepileptic drugs in a routine clinical setting: a comparison of free non-protein-bound concentrations. Epilepsia. 2017;58(7):1234–43. https://doi.org/10.1111/epi.13802.

    Article  CAS  PubMed  Google Scholar 

  9. Thompson J, Powell JD, Ovakim DH. Intentional overdose of the novel anti-epileptic drug eslicarbazepine presenting with recurrent seizures and ventricular dysrhythmias. CJEM. 2018;20(S2):S44–7. https://doi.org/10.1017/cem.2017.401.

    Article  PubMed  Google Scholar 

  10. Almeida L, Falcão A, Maia J, Mazur D, Gellert M, Soares-da-Silva P. Single-dose and steady-state pharmacokinetics of eslicarbazepine acetate (BIA 2-093) in healthy elderly and young subjects. J Clin Pharmacol. 2005;45:1062–6. https://doi.org/10.1177/0091270005279364.

    Article  CAS  PubMed  Google Scholar 

  11. Bialer M, Soares-da-Silva P. Pharmacokinetics and drug interactions of eslicarbazepine acetate. Epilepsia. 2012;53(6):935–46. https://doi.org/10.1111/j.1528-1167.2012.03519.x.

    Article  CAS  PubMed  Google Scholar 

  12. Gama H, Vieira M, Costa R, Graça J, Magalhães LM, Soares-da-Silva P. Safety profile of eslicarbazepine acetate as add-on therapy in adults with refractory focal-onset seizures: from clinical studies to 6 years of post-marketing experience. Drug Saf. 2017;40(12):1231–40. https://doi.org/10.1007/s40264-017-0576-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Posner EB, Mohamed K, Marson AG. A systematic review of treatment of typical absence seizures in children and adolescents with ethosuximide, sodium valproate or lamotrigine. Seizure. 2005;14(2):117–22. https://doi.org/10.1016/j.seizure.2004.12.003.

    Article  PubMed  Google Scholar 

  14. Gören MZ, Onat F. Ethosuximide: from bench to bedside. CNS Drug Rev. 2007;13(2):224–39. https://doi.org/10.1111/j.1527-3458.2007.00009.x.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patsalos PN, Spencer EP, Berry DJ. Therapeutic drug monitoring of antiepileptic drugs in epilepsy: a 2018 update. Ther Drug Monit. 2018;40(5):526–48. https://doi.org/10.1097/FTD.0000000000000546.

    Article  CAS  PubMed  Google Scholar 

  16. Marbury TC, Lee CS, Perchalski RJ, Wilder BJ. Hemodialysis clearance of ethosuximide in patients with chronic renal disease. Am J Hosp Pharm. 1981;38(11):1757–60.

    CAS  PubMed  Google Scholar 

  17. French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388(10056):2153–63. https://doi.org/10.1016/S0140-6736(16)31419-2.

    Article  CAS  PubMed  Google Scholar 

  18. Mizuguchi M, Ikeda H, Kagitani-Shimono K, Yoshinaga H, Suzuki Y, Aoki M, et al. Everolimus for epilepsy and autism spectrum disorder in tuberous sclerosis complex: EXIST-3 substudy in Japan. Brain and Development. 2019;41(1):1–10. https://doi.org/10.1016/j.braindev.2018.07.003.

    Article  PubMed  Google Scholar 

  19. Davies M, Saxena A, Kingswood JC. Management of everolimus-associated adverse events in patients with tuberous sclerosis complex: a practical guide. Orphanet J Rare Dis. 2017;12(1):35. https://doi.org/10.1186/s13023-017-0581-9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Overwater IE, Rietman AB, Mous SE, Bindels-de Heus K, Rizopoulos D, ten Hoopen LW, et al. A randomized controlled trial with everolimus for IQ and autism in tuberous sclerosis complex. Neurology. 2019;93(2):e200–9. https://doi.org/10.1212/WNL.0000000000007749.

    Article  PubMed  Google Scholar 

  21. Kume A, Greenfield LJ Jr, Macdonald RL, Albin RL. Felbamate inhibits [3H]t-butylbicycloorthobenzoate (TBOB) binding and enhances Cl- current at the gamma-aminobutyric AcidA (GABAA) receptor. J Pharmacol Exp Ther. 1996;277(3):1784–92.

    CAS  PubMed  Google Scholar 

  22. Jacob S, Nair AB. An updated overview on therapeutic drug monitoring of recent antiepileptic drugs. Drugs R D. 2016;16(4):303–16. https://doi.org/10.1007/s40268-016-0148-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burdette DE, Sackellares JC. Felbamate pharmacology and use in epilepsy. Clin Neuropharmacol. 1994;17(5):389–402. https://doi.org/10.1097/00002826-199410000-00001.

    Article  CAS  PubMed  Google Scholar 

  24. Rengstroff DS, Milstone AP, Seger DL, Meredith TJ. Felbamate overdose complicated by massive crystalluria and acute renal failure. J Toxicol Clin Toxicol. 2000;38(6):667–9. https://doi.org/10.1081/CLT-100102019.

    Article  Google Scholar 

  25. Sparagana SP, Strand WR, Adams RC. Felbamate urolithiasis. Epilepsia. 2001;42(5):682–5. https://doi.org/10.1046/j.1528-1157.2001.32500.x.

    Article  CAS  PubMed  Google Scholar 

  26. Rauck RL, Shaibani A, Biton V, Simpson J, Koch B. Lacosamide in painful diabetic peripheral neuropathy: a phase 2 double-blind placebo-controlled study. Clin J Pain. 2007;23(2):150–8. https://doi.org/10.1097/01.ajp.0000210957.39621.b2.

    Article  PubMed  Google Scholar 

  27. Wang X, Yu Y, Ma R, Shao N, Meng H. Lacosamide modulates collapsin response mediator protein 2 and inhibits mossy fiber sprouting after kainic acid-induced status epilepticus. Neuroreport. 2018;29(16):1384–90. https://doi.org/10.1097/WNR.0000000000001123.

    Article  CAS  PubMed  Google Scholar 

  28. Holtkamp D, Opitz T, Niespodziany I, Wolff C, Beck H. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na+ channel inactivation. Epilepsia. 2017;58(1):27–41. https://doi.org/10.1111/epi.13602.

    Article  CAS  PubMed  Google Scholar 

  29. de Biase S, Valente M, Gigli GL, Merlino G. Pharmacokinetic drug evaluation of lacosamide for the treatment of partial-onset seizures. Expert Opin Drug Metab Toxicol. 2017;13(9):997–1005. https://doi.org/10.1080/17425255.2017.1360278.

    Article  CAS  PubMed  Google Scholar 

  30. Chua-Tuan JL, Cao D, Iwanicki JL, Hoyte CO. Cardiac sodium channel blockade after an intentional ingestion of lacosamide, cyclobenzaprine, and levetiracetam: case report. Clin Toxicol. 2015;53(6):565–8.

    Article  Google Scholar 

  31. Deslandes G, Bouquié R, Lorber J, Bruneau C, Gregoire M, Grison-Hernando H, et al. Status epilepticus following self-poisoning of lacosamide and lamotrigine: a case report with follow-up of drug serum concentrations. Toxicol Anal Clin. 2015;27(2):88–90.

    Google Scholar 

  32. Krause LU, Brodowski KO, Kellinghaus C. Atrioventricular block following lacosamide intoxication. Epilepsy Behav. 2011;20(4):725–7. https://doi.org/10.1016/j.yebeh.2011.02.006.

    Article  PubMed  Google Scholar 

  33. Lachuer C, Corny J, Bézie Y, Ferchichi S, Durand-Gasselin B. Complete atrioventricular block in an elderly patient treated with low-dose lacosamide. Cardiovasc Toxicol. 2018;18(6):579–82. https://doi.org/10.1007/s12012-018-9467-x.

    Article  PubMed  Google Scholar 

  34. Ng PC, Schimmel J, Wang GS. Lacosamide overdose: a case of QRS prolongation and seizure. J Emerg Med. 2019;56(6):652–6. https://doi.org/10.1016/j.jemermed.2019.01.018.

    Article  PubMed  Google Scholar 

  35. Sunwoo JS, Byun JI, Lee SK. A case of lacosamide-induced hepatotoxicity. Int J Clin Pharmacol Ther. 2015;53(6):471–3. https://doi.org/10.5414/CP202282.

    Article  PubMed  Google Scholar 

  36. del Val AA, Blé Caso M, Higón Ballester M, Ortuño Cortés J. Lacosamide-induced acute pancreatitis with positive rechallenge test. J Clin Gastroenterol. 2014;48(7):651. https://doi.org/10.1097/MCG.0000000000000158.

    Article  Google Scholar 

  37. Cawello W, Fuhr U, Hering U, Maatouk H, Halabi A. Impact of impaired renal function on the pharmacokinetics of the antiepileptic drug lacosamide. Clin Pharmacokinet. 2013;52(10):897–906. https://doi.org/10.1007/s40262-013-0080-7.

    Article  CAS  PubMed  Google Scholar 

  38. Hanada T, Hashizume Y, Tokuhara N, Takenaka O, Kohmura N, Ogasawara A, et al. Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia. 2011;52(7):1331–40. https://doi.org/10.1111/j.1528-1167.2011.03109.x.

    Article  CAS  PubMed  Google Scholar 

  39. Patsalos PN. The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia. 2015;56(1):12–27. https://doi.org/10.1111/epi.12865.

    Article  CAS  PubMed  Google Scholar 

  40. • Kai L, Lasoff DR, Smollin CG, Ly BT. Perampanel overdose causing a prolonged coma. Clin Toxicol. 2018;56(7):677–8. https://doi.org/10.1080/15563650.2017.1422743This case report discusses the typical clinical course of perampanel overdose.

    Article  Google Scholar 

  41. Kim S, Kim TE, Kim D, Kim DW. Prolonged stupor in perampanel overdose and pharmacokinetic considerations. J Epilepsy Res. 2018;8(2):87–9. https://doi.org/10.14581/jer.18014.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ettinger A, Dobrinsky C, Yang H, Williams B, Xing D, Fain R, et al. Review of suicidality events in perampanel clinical studies (S31.001). Neurology. 2015;84(14 Supplement).

  43. Wu CC, McShane M, Huttlin EA, Novoa KC. Severe aggression after perampanel overdose: case report. Psychosomatics. 2019;60(3):321–4. https://doi.org/10.1016/j.psym.2018.07.002.

    Article  PubMed  Google Scholar 

  44. Karch SB. Methsuximide overdose. Delayed onset of profound coma. JAMA. 1973;223(13):1463–5. https://doi.org/10.1001/jama.223.13.1463.

    Article  CAS  PubMed  Google Scholar 

  45. Baehler RW, Work J, Smith W, Dominic JA. Charcoal hemoperfusion in the therapy for methsuximide and phenytoin overdose. Arch Intern Med. 1980;140(11):1466–8.

    Article  CAS  Google Scholar 

  46. Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A. 2004;101(26):9861–6. https://doi.org/10.1073/pnas.0308208101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klitgaard H, Matagne A, Nicolas JM, Gillard M, Lamberty Y, de Ryck M, et al. Brivaracetam: rationale for discovery and preclinical profile of a selective SV2A ligand for epilepsy treatment. Epilepsia. 2016;57(4):538–48. https://doi.org/10.1111/epi.13340.

    Article  PubMed  Google Scholar 

  48. Stockis A, Watanabe S, Rouits E, Matsuguma K, Irie S. Brivaracetam single and multiple rising oral dose study in healthy Japanese participants: influence of CYP2C19 genotype. Drug Metab Pharmacokinet. 2014;29(5):394–9. https://doi.org/10.2133/dmpk.dmpk-14-rg-010.

    Article  PubMed  Google Scholar 

  49. Barrueto F Jr, Williams K, Howland MA, Hoffman RS, Nelson LS. A case of levetiracetam (Keppra) poisoning with clinical and toxicokinetic data. J Toxicol Clin Toxicol. 2002;40(7):881–4. https://doi.org/10.1081/clt-120016959.

    Article  PubMed  Google Scholar 

  50. Rolan P, Sargentini-Maier ML, Pigeolet E, Stockis A. The pharmacokinetics, CNS pharmacodynamics and adverse event profile of brivaracetam after multiple increasing oral doses in healthy men. Br J Clin Pharmacol. 2008;66(1):71–5. https://doi.org/10.1111/j.1365-2125.2008.03158.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arroyo S. Rufinamide. Neurotherapeutics. 2007;4:155–62. https://doi.org/10.1016/j.nurt.2006.11.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perucca E, Cloyd J, Critchley D, Fuseau E. Rufinamide: clinical pharmacokinetics and concentration-response relationships in patients with epilepsy. Epilepsia. 2008;49(7):1123–41. https://doi.org/10.1111/j.1528-1167.2008.01665.x.

    Article  CAS  PubMed  Google Scholar 

  53. Biton V, Krauss G, Vasquez-Santana B, Bibbiani F, Mann A, Perdomo C, et al. A randomized, double-blind, placebo-controlled, parallel-group study of rufinamide as adjunctive therapy for refractory partial-onset seizures. Epilepsia. 2011;52(2):234–42. https://doi.org/10.1111/j.1528-1167.2010.02729.x.

    Article  CAS  PubMed  Google Scholar 

  54. Schimpf R, Veltmann C, Papavassiliu T, Rudic B, Göksu T, Kuschyk J, et al. Drug-induced QT-interval shortening following antiepileptic treatment with oral rufinamide. Heart Rhythm. 2012;9(5):776–81. https://doi.org/10.1016/j.hrthm.2012.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Eke T, Talbot JF, Lawden MC. Severe persistent visual field constriction associated with vigabatrin. BMJ. 1997;314:180–1. https://doi.org/10.1136/bmj.314.7075.180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. • Foroozan R. Vigabatrin: lessons learned from the United States experience. J Neuroophthalmol. 2018;38(4):442–50. https://doi.org/10.1097/WNO.0000000000000609Vigabatrin’s major adverse effect is highlighted and discussed.

    Article  PubMed  Google Scholar 

  57. Lawden M, Eke T, Degg C, Harding G, Wild J. Visual field defects associated with vigabatrin therapy. J Neurol Neurosurg Psychiatry. 1999;67:716–22. https://doi.org/10.1136/jnnp.67.6.716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kito M, Maehara M, Watanabe K. Mechanisms of T-type calcium channel blockade by zonisamide. Seizure. 1996;5(2):115–9. https://doi.org/10.1016/s1059-1311(96)80104-x.

    Article  CAS  PubMed  Google Scholar 

  59. Leppik IE. Zonisamide: chemistry, mechanism of action, and pharmacokinetics. Seizure. 2004;13:S5–9. https://doi.org/10.1016/j.seizure.2004.04.016.

    Article  PubMed  Google Scholar 

  60. Sills GJ, Brodie MJ. Pharmacokinetics and drug interactions with zonisamide. Epilepsia. 2007;48:435–41. https://doi.org/10.1111/j.1528-1167.2007.00983.x.

    Article  CAS  PubMed  Google Scholar 

  61. Frampton JE, Scott LJ. Zonisamide. CNS Drugs. 2005;19:347–67. https://doi.org/10.2165/00023210-200519040-00010.

    Article  CAS  PubMed  Google Scholar 

  62. Baulac M. Introduction to zonisamide. Epilepsy Research. 2006;68:S3–9. https://doi.org/10.1016/j.eplepsyres.2005.11.004.

    Article  CAS  PubMed  Google Scholar 

  63. Sztajnkrycer MD, Huang EE, Bond GR. Acute zonisamide overdose: a death revisited. Vet Hum Toxicol. 2003;45(3):154–6.

    PubMed  Google Scholar 

  64. Ijiri Y, Inoue T, Fukuda F, Suzuki K, Kobayashi T, Shibahara N, et al. Dialyzability of the antiepileptic drug zonisamide in patients undergoing hemodialysis. Epilepsia. 2004;45:924–7. https://doi.org/10.1111/j.0013-9580.2004.30603.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Walsh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Acute Care Pharmacology and Toxicology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, S.J., Chen, R.J., Ershad, M. et al. The Toxicity of Newer and Lesser-Known Anticonvulsant Drugs. Curr Emerg Hosp Med Rep 8, 142–150 (2020). https://doi.org/10.1007/s40138-020-00220-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40138-020-00220-7

Keywords

Navigation