Skip to main content

Robotic Pancreatoduodenectomy: From the First Worldwide Procedure to the Actual State of the Art

Abstract

Purpose of Review

The purpose of this review is to summarize the current experience and literature on robotic pancreatoduodenectomy and analyze its indications, surgical technique, and related peri- and postoperative outcomes.

Recent Findings

Complex hepato-pancreatico-biliary (HPB) minimally invasive surgical procedures that were only attainable after a long learning curve by highly skilled laparoscopic surgeons are now robotically performed with a shorter learning curve by dedicated HPB surgeons. Image integration, fusion imaging, digital pathology, electronic tutoring, automation, telepresence, and telesurgery are the principal axis for further progress in robotic surgery.

Summary

Despite growing experience in the field of pancreatic surgery, which has improved surgical outcomes, pancreatoduodenectomy remains associated with high morbidity rates. The robotic approach is a promising alternative technique and although evidence from randomized clinical trials is missing, it seems to offer many of the benefits of minimally invasive surgery without compromising the oncologic outcomes achieved in open surgery. In terms of peri- and postoperative outcomes, robotic pancreatoduodenectomy (RPD) showed reduced intraoperative blood loss, conversion rate, and length of hospital stay when compared to the open and laparoscopic approaches. Concerning the oncologic outcomes, RPD was found to be equivalent to the open and laparoscopic approaches. Still, a higher lymph-node harvest, lower resection margin involvement, and higher proportion of patients receiving adjuvant therapy were reported for RPD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tempero MA, Malafa MP, Al-Hawary M, et al. Pancreatic adenocarcinoma, version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2021;19(4):439–457. https://doi.org/10.6004/jnccn.2021.0017

  2. Zhao Z, Yin Z, Hang Z, Ji G, Feng Q, Zhao Q. A systemic review and an updated meta-analysis: minimally invasive vs open pancreaticoduodenectomy. Sci Rep. 2017;7(1):2220. https://doi.org/10.1038/s41598-017-02488-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Peng L, Lin S, Li Y, Xiao W. Systematic review and meta-analysis of robotic versus open pancreaticoduodenectomy. Surg Endosc. 2017;31(8):3085–97. https://doi.org/10.1007/s00464-016-5371-2.

    Article  PubMed  Google Scholar 

  4. Valle V, Fernandes E, Mangano A, et al. Robotic Whipple for pancreatic ductal and ampullary adenocarcinoma: 10 years experience of a us single-center. Int J Med Robot. 2020;16(5):1–7. https://doi.org/10.1002/rcs.2135.

    Article  PubMed  Google Scholar 

  5. van Hilst J, Korrel M, de Rooij T, et al. Oncologic outcomes of minimally invasive versus open distal pancreatectomy for pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. Eur J Surg Oncol. 2019;45(5):719–27. https://doi.org/10.1016/j.ejso.2018.12.003.

    Article  PubMed  Google Scholar 

  6. Weng Y, Jiang Y, Fu N, et al. Oncological outcomes of robotic-assisted versus open pancreatoduodenectomy for pancreatic ductal adenocarcinoma: a propensity score-matched analysis. Surg Endosc. 2021;35(7):3437–48. https://doi.org/10.1007/s00464-020-07791-2.

    Article  PubMed  Google Scholar 

  7. Gagner M, Pomp A. Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg Endosc. 1994;8(5):408–10. https://doi.org/10.1007/BF00642443.

    CAS  Article  PubMed  Google Scholar 

  8. Giulianotti PC. Robotics in general surgery: personal experience in a large community hospital. Arch Surg. 2003;138(7):777. https://doi.org/10.1001/archsurg.138.7.777.

    Article  PubMed  Google Scholar 

  9. Giulianotti PC, Addeo P, Buchs NC, Ayloo SM, Bianco FM. Robotic extended pancreatectomy with vascular resection for locally advanced pancreatic tumors. Pancreas. 2011;40(8):1264–70. https://doi.org/10.1097/MPA.0b013e318220e3a4.

    Article  PubMed  Google Scholar 

  10. Kauffmann EF, Napoli N, Menonna F, et al. Robotic pancreatoduodenectomy with vascular resection. Langenbecks Arch Surg. 2016;401(8):1111–22. https://doi.org/10.1007/s00423-016-1499-8.

    Article  PubMed  Google Scholar 

  11. Beane JD, Zenati M, Hamad A, Hogg ME, Zeh HJ, Zureikat AH. Robotic pancreatoduodenectomy with vascular resection: outcomes and learning curve. Surgery. 2019;166(1):8–14. https://doi.org/10.1016/j.surg.2019.01.037.

    Article  PubMed  Google Scholar 

  12. Allan BJ, Novak SM, Hogg ME, Zeh HJ. Robotic vascular resections during Whipple procedure. J Vis Surg. 2018;4:13–13. https://doi.org/10.21037/jovs.2017.12.15.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Giulianotti PC, Mangano A, Bustos RE, et al. Operative technique in robotic pancreaticoduodenectomy (RPD) at University of Illinois at Chicago (UIC): 17 steps standardized technique: lessons learned since the first worldwide RPD performed in the year 2001. Surg Endosc. 2018;32(10):4329–36. https://doi.org/10.1007/s00464-018-6228-7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Giulianotti PC, Mangano A, Bustos RE, et al. Educational step-by-step surgical video about operative technique in robotic pancreaticoduodenectomy (RPD) at University of Illinois at Chicago (UIC): 17 steps standardized technique—lessons learned since the first worldwide RPD performed in the year 2001. Surg Endosc. 2020;34(6):2758–62. https://doi.org/10.1007/s00464-020-07383-0.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang SE, Shyr BU, Chen SC, Shyr YM. Comparison between robotic and open pancreaticoduodenectomy with modified Blumgart pancreaticojejunostomy: a propensity score–matched study. Surgery. 2018;164(6):1162–7. https://doi.org/10.1016/j.surg.2018.06.031.

    Article  PubMed  Google Scholar 

  16. Ielpo B, Caruso R, Duran H, et al. Robotic versus standard open pancreatectomy: a propensity score-matched analysis comparison. Updates Surg. 2019;71(1):137–44. https://doi.org/10.1007/s13304-018-0529-1.

    Article  PubMed  Google Scholar 

  17. Bencini L, Tofani F, Paolini C, et al. Single-centre comparison of robotic and open pancreatoduodenectomy: a propensity score-matched study. Surg Endosc. 2020;34(12):5402–12. https://doi.org/10.1007/s00464-019-07335-3.

    Article  PubMed  Google Scholar 

  18. Kauffmann EF, Napoli N, Menonna F, et al. A propensity score-matched analysis of robotic versus open pancreatoduodenectomy for pancreatic cancer based on margin status. Surg Endosc. 2019;33(1):234–42. https://doi.org/10.1007/s00464-018-6301-2.

    Article  PubMed  Google Scholar 

  19. Jin JB, Qin K, Yang Y, et al. Robotic pancreatectomy for solid pseudopapillary tumors in the pancreatic head: a propensity score-matched comparison and analysis from a single center. Asian J Surg. 2020;43(1):354–61. https://doi.org/10.1016/j.asjsur.2019.05.016.

    Article  PubMed  Google Scholar 

  20. Shi Y, Jin J, Qiu W, et al. Short-term outcomes after robot-assisted vs open pancreaticoduodenectomy after the learning curve. JAMA Surg. 2020;155(5):389. https://doi.org/10.1001/jamasurg.2020.0021.

    Article  PubMed  Google Scholar 

  21. Baimas-George M, Watson M, Murphy KJ, et al. Robotic pancreaticoduodenectomy may offer improved oncologic outcomes over open surgery: a propensity-matched single-institution study. Surg Endosc. 2020;34(8):3644–9. https://doi.org/10.1007/s00464-020-07564-x.

    Article  PubMed  Google Scholar 

  22. Kim HS, Han Y, Kang JS, et al. Comparison of surgical outcomes between open and robot-assisted minimally invasive pancreaticoduodenectomy. J Hepatobiliary Pancreat Sci. 2018;25(2):142–9. https://doi.org/10.1002/jhbp.522.

    Article  PubMed  Google Scholar 

  23. van Oosten AF, Ding D, Habib JR, et al. Perioperative outcomes of robotic pancreaticoduodenectomy: a propensity-matched analysis to open and laparoscopic pancreaticoduodenectomy. J Gastrointest Surg. 2021;25(7):1795–804. https://doi.org/10.1007/s11605-020-04869-z.

    Article  PubMed  Google Scholar 

  24. Buchs NC, Addeo P, Bianco FM, Ayloo S, Benedetti E, Giulianotti PC. Robotic versus open pancreaticoduodenectomy: a comparative study at a single institution. World J Surg. 2011;35(12):2739–46. https://doi.org/10.1007/s00268-011-1276-3.

    Article  PubMed  Google Scholar 

  25. •• Kabir T, Tan HL, Syn NL, Wu EJ, Kam JH, Goh BKP. Outcomes of laparoscopic, robotic, and open pancreatoduodenectomy: a network meta-analysis of randomized controlled trials and propensity-score matched studies. Surgery. 2022;171(2):476–489. https://doi.org/10.1016/j.surg.2021.07.020. This is a recent meta-analysis of randomized controlled trials and propensity-score matched studies that compares outcomes of minimally invasive and open pancreatoduodenectomy.

  26. Liu R, Zhang T, Zhao ZM, et al. The surgical outcomes of robot-assisted laparoscopic pancreaticoduodenectomy versus laparoscopic pancreaticoduodenectomy for periampullary neoplasms: a comparative study of a single center. Surg Endosc. 2017;31(6):2380–6. https://doi.org/10.1007/s00464-016-5238-6.

    Article  PubMed  Google Scholar 

  27. Nassour I, Wang SC, Porembka MR, et al. Robotic versus laparoscopic pancreaticoduodenectomy: a NSQIP Analysis. J Gastrointest Surg. 2017;21(11):1784–92. https://doi.org/10.1007/s11605-017-3543-6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nassour I, Choti MA, Porembka MR, Yopp AC, Wang SC, Polanco PM. Robotic-assisted versus laparoscopic pancreaticoduodenectomy: oncological outcomes. Surg Endosc. 2018;32(6):2907–13. https://doi.org/10.1007/s00464-017-6002-2.

    Article  PubMed  Google Scholar 

  29. Zimmerman AM, Roye DG, Charpentier KP. A comparison of outcomes between open, laparoscopic and robotic pancreaticoduodenectomy. HPB. 2018;20(4):364–9. https://doi.org/10.1016/j.hpb.2017.10.008.

    Article  PubMed  Google Scholar 

  30. Xourafas D, Pawlik TM, Cloyd JM. Independent predictors of increased operative time and hospital length of stay are consistent across different surgical approaches to pancreatoduodenectomy. J Gastrointest Surg. 2018;22(11):1911–9. https://doi.org/10.1007/s11605-018-3834-6.

    Article  PubMed  Google Scholar 

  31. Goh BKP, Low T, Kam J, Lee S, Chan C. Initial experience with laparoscopic and robotic surgery for the treatment of periampullary tumours: single institution experience with the first 30 consecutive cases. ANZ J Surg. 2019;89(4):E137–41. https://doi.org/10.1111/ans.15033.

    Article  PubMed  Google Scholar 

  32. • Lof S, Vissers FL, Klompmaker S, et al. Risk of conversion to open surgery during robotic and laparoscopic pancreatoduodenectomy and effect on outcomes: international propensity score-matched comparison study. British Journal of Surgery. 2021;108(1):80–87. https://doi.org/10.1093/bjs/znaa026. This European multicentre analysis compared outcomes of converted and non-converted MIS-PD procedures.

  33. Bassi C, Marchegiani G, Dervenis C, et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 years after. Surgery. 2017;161(3):584–91. https://doi.org/10.1016/j.surg.2016.11.014.

    Article  PubMed  Google Scholar 

  34. •• Cai J, Ramanathan R, Zenati MS, et al. Robotic pancreaticoduodenectomy is associated with decreased clinically relevant pancreatic fistulas: a propensity-matched analysis. J Gastrointest Surg. 2020;24(5):1111–8. https://doi.org/10.1007/s11605-019-04274-1. Thispropensity-matchedanalysisevaluatedtheimpactoftheroboticapproachonCr-POPF

    Article  PubMed  Google Scholar 

  35. Zhang W, Huang Z, Zhang J, Che X. Safety and efficacy of robot-assisted versus open pancreaticoduodenectomy: a meta-analysis of multiple worldwide centers. Updates Surg. 2021;73(3):893–907. https://doi.org/10.1007/s13304-020-00912-5.

    Article  PubMed  Google Scholar 

  36. Vining CC, Kuchta K, Schuitevoerder D, et al. Risk factors for complications in patients undergoing pancreaticoduodenectomy: a NSQIP analysis with propensity score matching. J Surg Oncol. 2020;122(2):183–94. https://doi.org/10.1002/jso.25942.

    Article  PubMed  Google Scholar 

  37. McMillan MT, Zureikat AH, Hogg ME, et al. A propensity score-matched analysis of robotic vs open pancreatoduodenectomy on incidence of pancreatic fistula. JAMA Surg. 2017;152(4):327. https://doi.org/10.1001/jamasurg.2016.4755.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gall TMH, Pencavel TD, Cunningham D, Nicol D, Jiao LR. Transition from open and laparoscopic to robotic pancreaticoduodenectomy in a UK tertiary referral hepatobiliary and pancreatic centre—early experience of robotic pancreaticoduodenectomy. HPB. 2020;22(11):1637–44. https://doi.org/10.1016/j.hpb.2020.03.008.

    Article  PubMed  Google Scholar 

  39. Girgis MD, Zenati MS, King JC, et al. Oncologic outcomes after robotic pancreatic resections are not inferior to open surgery. Ann Surg. 2021;274(3):e262–8. https://doi.org/10.1097/SLA.0000000000003615.

    Article  PubMed  Google Scholar 

  40. Marino MV, Podda M, Gomez Ruiz M, Fernandez CC, Guarrasi D, Gomez FM. Robotic-assisted versus open pancreaticoduodenectomy: the results of a case-matched comparison. J Robotic Surg. 2020;14(3):493–502. https://doi.org/10.1007/s11701-019-01018-w.

    Article  Google Scholar 

  41. Mejia A, Shah J, Vivian E, Acharya P. Analysis of 102 fully robotic pancreaticoduodenectomies: clinical and financial outcomes. Pancreas. 2020;49(5):668–74. https://doi.org/10.1097/MPA.0000000000001545.

    Article  PubMed  Google Scholar 

  42. Bao PQ, Mazirka PO, Watkins KT. Retrospective comparison of robot-assisted minimally invasive versus open pancreaticoduodenectomy for periampullary neoplasms. J Gastrointest Surg. 2014;18(4):682–9. https://doi.org/10.1007/s11605-013-2410-3.

    Article  PubMed  Google Scholar 

  43. Kamarajah SK, Bundred J, Marc OS, et al. Robotic versus conventional laparoscopic pancreaticoduodenectomy a systematic review and meta-analysis. Eur J Surg Oncol. 2020;46(1):6–14. https://doi.org/10.1016/j.ejso.2019.08.007.

    Article  PubMed  Google Scholar 

  44. •• Da Dong X, Felsenreich DM, Gogna S, et al. Robotic pancreaticoduodenectomy provides better histopathological outcomes as compared to its open counterpart: a meta-analysis. Sci Rep. 2021;11(1):3774. https://doi.org/10.1038/s41598-021-83391-x. This meta-analysis on robotic and open PDs evaluated whether the robotic approach provides better clinical and pathologic outcomes compared to its open counterpart.

  45. van Dam JL, Janssen QP, Besselink MG, et al. Neoadjuvant therapy or upfront surgery for resectable and borderline resectable pancreatic cancer: a meta-analysis of randomised controlled trials. Eur J Cancer. 2022;160:140–9. https://doi.org/10.1016/j.ejca.2021.10.023.

    CAS  Article  PubMed  Google Scholar 

  46. • Nassour I, Tohme S, Hoehn R, Adam MA, Zureikat AH, Alessandro P. Safety and oncologic efficacy of robotic compared to open pancreaticoduodenectomy after neoadjuvant chemotherapy for pancreatic cancer. Surg Endosc. 2021;35(5):2248–2254. doi:https://doi.org/10.1007/s00464-020-07638-w. This retrospective study compared the postoperative, pathological and long-term oncologic outcomes of RPD and OPD for pancreatic adenocarcinoma following neoadjuvant chemotherapy.

  47. Hasegawa H, Takahashi A, Kakeji Y, et al. Surgical outcomes of gastroenterological surgery in Japan: report of the National Clinical Database 2011–2017. Ann Gastroenterol Surg. 2019;3(4):426–50. https://doi.org/10.1002/ags3.12258.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu Z, Peneva IS, Evison F, et al. Ninety day mortality following pancreatoduodenectomy in England: has the optimum centre volume been identified? HPB. 2018;20(11):1012–20. https://doi.org/10.1016/j.hpb.2018.04.008.

    CAS  Article  PubMed  Google Scholar 

  49. Nassour I, Winters SB, Hoehn R, et al. Long-term oncologic outcomes of robotic and open pancreatectomy in a national cohort of pancreatic adenocarcinoma. J Surg Oncol. 2020;122(2):234–42. https://doi.org/10.1002/jso.25958.

    Article  PubMed  Google Scholar 

  50. Giulianotti PC, Sbrana F, Bianco FM, et al. Robot-assisted laparoscopic pancreatic surgery: single-surgeon experience. Surg Endosc. 2010;24(7):1646–57. https://doi.org/10.1007/s00464-009-0825-4.

    Article  PubMed  Google Scholar 

  51. Hoehn RS, Nassour I, Adam MA, Winters S, Paniccia A, Zureikat AH. National trends in robotic pancreas surgery. J Gastrointest Surg. 2021;25(4):983–90. https://doi.org/10.1007/s11605-020-04591-w.

    Article  PubMed  Google Scholar 

  52. •• Asbun HJ, Moekotte AL, Vissers FL, et al. The Miami International Evidence-based Guidelines on Minimally Invasive Pancreas Resection. Ann Surg. 2020;271(1):1–14. https://doi.org/10.1097/SLA.0000000000003590. This is the most recent landmark consensus meeting that discussed important aspects of MIS pancreatic procedures.

    Article  PubMed  Google Scholar 

  53. Nassour I, Wang SC, Christie A, et al. Minimally invasive versus open pancreaticoduodenectomy: a propensity-matched study from a national cohort of patients. Ann Surg. 2018;268(1):151–7. https://doi.org/10.1097/SLA.0000000000002259.

    Article  PubMed  Google Scholar 

  54. Dreifuss NH, Cubisino A, Schlottmann F, Giulianotti PC. Robotic-assisted central pancreatectomy: a minimally invasive approach for benign and low-grade lesions. Surg Oncol. https://doi.org/10.1016/j.suronc.2022.101736

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cubisino.

Ethics declarations

Conflict of interest

Pier Cristoforo Giulianotti has a consultant agreement with Covidien/Medtronic and Ethicon Endosurgery, and he also has an institutional agreement (University of Illinois at Chicago) for training with Intuitive. All other authors have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Robotic Surgery.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cubisino, A., Valle, V., Dreifuss, N.H. et al. Robotic Pancreatoduodenectomy: From the First Worldwide Procedure to the Actual State of the Art. Curr Surg Rep 10, 126–132 (2022). https://doi.org/10.1007/s40137-022-00319-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40137-022-00319-8

Keywords

  • Robotic surgery
  • Robotic-assisted pancreatoduodenectomy
  • Review
  • Pancreatoduodenectomy
  • Minimally invasive surgery