Skip to main content

Advertisement

Log in

New and Emerging Biological Medications for Asthma, Allergic Rhinitis and Chronic Rhinosinusitis: a Concise Review

  • Special Topics in Otorhinolaryngology: Otolaryngic Allergy (E Toskala, Section Editor)
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of the study is to survey the current literature describing the use of biologic agents in the treatment of asthma, allergic rhinitis, and chronic rhinosinusitis.

Recent Findings

The Food and Drug Administration (FDA) has approved three biologic agents for asthma and four sublingual immunotherapy (SLIT) products for allergic rhinitis (AR). While no agents are specifically approved for chronic rhinosinusitis (CRS), the overlap between asthma, AR, and CRS potentially affords FDA-approved treatment options for CRS patients. In addition to currently approved products for these conditions, other agents are currently under investigation. Biologic agents have the potential to improve quality of life and reduce exacerbations and steroid use for patients with asthma. SLIT is a convenient method of administering immunotherapy to patients with AR. The current literature does not adequately compare the effectiveness of SLIT to subcutaneous immunotherapy (SCIT), but results are favorable to placebo for both. While not FDA approved as a treatment for CRS, biologic agents have resulted in benefits in subjective quality of life and objective nasal outcomes in clinical studies of patients with CRS and eosinophilia.

Summary

Mechanisms and clinical outcomes of new and upcoming biologic agents for asthma, AR, and CRS are described. It is expected that in the next decade, there will be more of these agents approved for use in these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. What Are “Biologics” Questions and Answers. Food Drug Adm. 2015. https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cber/ucm133077.htm. Accessed 1 Jan 2017.

  2. McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017;389(10086):2328–37. https://doi.org/10.1016/S0140-6736(17)31472-1.

    Article  CAS  PubMed  Google Scholar 

  3. Schlussel AT, Steele SR, Alavi K. Current challenges in the surgical management of Crohn’s disease: a systematic review. Am J Surg. 2016;212(2):345–51. https://doi.org/10.1016/j.amjsurg.2015.12.027.

    Article  PubMed  Google Scholar 

  4. Veilleux MS, Shear NH. Biologics in patients with skin diseases. J Allergy Clin Immunol. 2017;139(5):1423–30. https://doi.org/10.1016/j.jaci.2017.03.012.

    Article  PubMed  Google Scholar 

  5. Corren J. Asthma phenotypes and endotypes: an evolving paradigm for classification. Discov Med. 2013;15(83):243–9. http://www.ncbi.nlm.nih.gov/pubmed/23636141

    PubMed  Google Scholar 

  6. Stokes JR, Casale TB. Characterization of asthma endotypes: implications for therapy. Ann Allergy Asthma Immunol. 2016;117(2):121–5. https://doi.org/10.1016/j.anai.2016.05.016.

    Article  CAS  PubMed  Google Scholar 

  7. Pawankar R, Mori S, Ozu C, Kimura S. Overview on the pathomechanisms of allergic rhinitis. Asia Pac Allergy. 2011;1(3):157–67. https://doi.org/10.5415/apallergy.2011.1.3.157.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Steinke JW, Payne SC, Borish L. Interleukin-4 in the generation of the AERD phenotype: implications for molecular mechanisms driving therapeutic benefit of aspirin desensitization. J Allergy. 2012;2012:1–9. https://doi.org/10.1155/2012/182090.

    Article  Google Scholar 

  9. Ramanathan M, Lee W-K, Spannhake EW, Lane AP. Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells. Am J Rhinol. 2008;22(2):115–21. https://doi.org/10.2500/ajr.2008.22.3136.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Information for Healthcare Professionals: Omalizumab (marketed as Xolair). US Food Drug Adm. 2013. https://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm126456.htm. Accessed January 1, 2017.

  11. Highlights of Prescribing Information (Dupixent). US Food Drug Adm. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761055lbl.pdf. Accessed January 1, 2017.

  12. Highlights of Prescribing Information (Nucala). US Food Drug Adm. 2015. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125526Orig1s000Lbl.pdf. Accessed January 1, 2017.

  13. Highlights of Prescribing Information (Cinqair). US Food Drug Adm. 2016. http://www.cinqair.com/pdf/PrescribingInformation.pdf. Accessed January 1, 2017.

  14. Bleecker ER, FitzGerald JM, Chanez P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet (London, England). 2016;388(10056):2115–27. https://doi.org/10.1016/S0140-6736(16)31324-1.

    Article  CAS  Google Scholar 

  15. FitzGerald JM, Bleecker ER, Nair P, et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet (London, England). 2016;388(10056):2128–41. https://doi.org/10.1016/S0140-6736(16)31322-8.

    Article  CAS  Google Scholar 

  16. Schulman ES. Development of a monoclonal anti-immunoglobulin E antibody (omalizumab) for the treatment of allergic respiratory disorders. Am J Respir Crit Care Med. 2001;164(8 II) https://doi.org/10.1164/ajrccm.164.supplement_1.2103025.

  17. Chang TW, Wu PC, Hsu CL, Hung AF. Anti-IgE antibodies for the treatment of IgE-mediated allergic diseases. Adv Immunol. 2007;93:63–119. https://doi.org/10.1016/S0065-2776(06)93002-8.

    Article  CAS  PubMed  Google Scholar 

  18. Holgate S, Smith N, Massanari M, Jimenez P. Effects of omalizumab on markers of inflammation in patients with allergic asthma. Allergy. 2009;64(12):1728–36. https://doi.org/10.1111/j.1398-9995.2009.02201.x.

    Article  CAS  PubMed  Google Scholar 

  19. Al Said A, Cushen B, Costello RW. Targeting patients with asthma for omalizumab therapy: choosing the right patient to get the best value for money. Ther Adv Chronic Dis. 2017;8(2–3):31–45. https://doi.org/10.1177/2040622317690494.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Novartis announces FDA approval of Xolair® (omalizumab) for pediatric allergic asthma. Novartis. 2016. https://www.pharma.us.novartis.com/news/media-releases/novartis-announces-fda-approval-xolairr-omalizumab-pediatric-allergic-asthma. Accessed August 15, 2017.

  21. Diaz RA, Charles Z, George E, Adler AI. NICE guidance on omalizumab for severe asthma. Lancet Respir Med. 2013;1(3):189–90.

    Article  PubMed  Google Scholar 

  22. Bousquet J, Wenzel S, Holgate S, Lumry W, Freeman P, Fox H. Predicting response to omalizumab, an anti-IgE antibody, in patients with allergic asthma. Chest. 2004;125(4):1378–86. https://doi.org/10.1378/chest.125.4.1378.

    Article  CAS  PubMed  Google Scholar 

  23. Menzella F, Facciolongo N, Castagnetti C, Simonazzi A, Zucchi L. Omalizumab: when the non-responder is a late-responder. Eur Ann Allergy Clin Immunol. 2009;41(5):155–9. http://www.ncbi.nlm.nih.gov/pubmed/20101930

    CAS  PubMed  Google Scholar 

  24. Holgate ST, Chuchalin AG, Hébert J, et al. Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clin Exp Allergy. 2004;34(4):632–8. https://doi.org/10.1111/j.1365-2222.2004.1916.x.

    Article  CAS  PubMed  Google Scholar 

  25. Busse W, Corren J, Lanier BQ, et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108(2):184–90. https://doi.org/10.1067/mai.2001.117880.

    Article  CAS  PubMed  Google Scholar 

  26. Solèr M, Matz J, Townley R, et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur Respir J. 2001;18(2):254–61. https://doi.org/10.1183/09031936.01.00092101.

    Article  PubMed  Google Scholar 

  27. • Normansell R, Walker S, Milan SJ, Walters EH, Nair P. Omalizumab for asthma in adults and children. Cochrane Database Syst Rev. 2014;1(1):CD003559. https://doi.org/10.1002/14651858.CD003559.pub4. A systematic review of omalizumab, which is a major biologic medication for asthma. This compiles a lot of data from other studies and explains the effectiveness of omalizumab.

    Google Scholar 

  28. Hanania NA, Alpan O, Hamilos DL, et al. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med. 2011;154(9):573–82. https://doi.org/10.7326/0003-4819-154-9-201105030-00002.

    Article  PubMed  Google Scholar 

  29. FDA approves Nucala to treat severe asthma. US Food Drug Adm. 2015. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm471031.htm. Accessed January 1, 2017.

  30. Wechsler ME, Akuthota P, Jayne D, et al. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N Engl J Med. 2017;376(20):1921–32. https://doi.org/10.1056/NEJMoa1702079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nucala (mepolizumab) for injection [prescribing information]. 2015.

  32. Powell C, Milan SJ, Dwan K, Bax L, Walters N. Mepolizumab versus placebo for asthma. Cochrane Database Syst Rev. 2015;7:CD010834. https://doi.org/10.1002/14651858.CD010834.pub2.

    Google Scholar 

  33. • Bel EH, Wenzel SE, Thompson PJ, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. NEJM. 2014;371(13):1189–97. https://doi.org/10.1056/NEJMoa1403291. These are landmark trials which were critical to the approval of mepolizumab.

    Article  PubMed  Google Scholar 

  34. • Ortega HG, Liu MC, Pavord ID, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371(13):1198–207. https://doi.org/10.1056/NEJMoa1403290. These are landmark trials which were critical to the approval of mepolizumab.

    Article  PubMed  Google Scholar 

  35. Castro M, Zangrilli J, Wechsler ME, et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355–66. https://doi.org/10.1016/S2213-2600(15)00042-9.

    Article  CAS  PubMed  Google Scholar 

  36. Castro M, Mathur S, Hargreave F, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184(10):1125–32. https://doi.org/10.1164/rccm.201103-0396OC.

    Article  CAS  PubMed  Google Scholar 

  37. Bjermer L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Germinaro M. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels: a randomized phase 3 study, Chest, vol. 150; 2016. p. 789–98. https://doi.org/10.1016/j.chest.2016.03.032.

    Google Scholar 

  38. • Corren J, Weinstein S, Janka L, Zangrilli J, Garin M. Phase 3 study of reslizumab in patients with poorly controlled asthma: effects across a broad range of eosinophil counts. In: Chest.Vol 150.; 2016:799–810. https://doi.org/10.1016/j.chest.2016.03.018. This is a well-designed study reinforcing the effectiveness of reslizumab being particularly more impressive in patients with higher levels of eosinophilia.

  39. Ghazi A, Trikha A, Calhoun WJ. Benralizumab—a humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity—a novel approach for the treatment of asthma. Expert Opin Biol Ther. 2012;12(1):113–8. https://doi.org/10.1517/14712598.2012.642359.

    Article  CAS  PubMed  Google Scholar 

  40. Nair P, Wenzel S, Rabe KF, et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N Engl J Med. 2017;376(25):2448–58. https://doi.org/10.1056/NEJMoa1703501.

    Article  CAS  PubMed  Google Scholar 

  41. FDA approves new eczema drug Dupixent. US Food Drug Adm. 2017. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm549078.htm. Accessed January 1, 2017.

  42. Wenzel S, Castro M, Corren J, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet (London, England). 2016;388(10039):31–44. https://doi.org/10.1016/S0140-6736(16)30307-5.

    Article  CAS  Google Scholar 

  43. Shirley M. Dupilumab: first global approval. Drugs. 2017;77(10):1115–21.

    Article  CAS  PubMed  Google Scholar 

  44. Jay DC, Nadeau KC. Immune mechanisms of sublingual immunotherapy. Curr Allergy Asthma Rep. 2014;14(11):1–7. https://doi.org/10.1007/s11882-014-0473-1.

    Article  CAS  Google Scholar 

  45. Highlights of Prescribing Information (Grastek). US Food Drug Adm. 2017.

  46. Highlights of Prescribing Information (Oralair). US Food Drug Adm. 2014.

  47. Highlights of Prescribing Information (Ragwitek). US Food Drug Adm. 2017. https://www.fda.gov/downloads/BiologicsBloodVaccines/Allergenics/UCM393600.pdf. Accessed August 8, 2017.

  48. Highlights of Prescribing Information (Odactra). US Food Drug Adm. 2017. https://www.fda.gov/downloads/biologicsbloodvaccines/allergenics/ucm544382.pdf. Accessed August 8, 2017.

  49. April 11, 2014 Approval Letter - GRASTEK. US Food Drug Adm. 2015. https://www.fda.gov/biologicsbloodvaccines/allergenics/ucm393185.htm. Accessed August 8, 2017.

  50. April 1, 2014 Approval Letter - ORALAIR. US Food Drug Adm. 2014. https://www.fda.gov/biologicsbloodvaccines/allergenics/ucm391573.htm.

  51. Di Bona D, Plaia A, Leto-Barone MS, La Piana S, Di Lorenzo G. Efficacy of grass pollen allergen sublingual immunotherapy tablets for seasonal allergic rhinoconjunctivitis: a systematic review and meta-analysis. JAMA Intern Med. 2015;175(8):1301–9. https://doi.org/10.1001/jamainternmed.2015.2840.

    Article  PubMed  Google Scholar 

  52. Durham SR, Emminger W, Kapp A, et al. SQ-standardized sublingual grass immunotherapy: confirmation of disease modification 2 years after 3 years of treatment in a randomized trial. J Allergy Clin Immunol. 2012;129(3) https://doi.org/10.1016/j.jaci.2011.12.973.

  53. April 17, 2014 Approval Letter - RAGWITEK. US Food Drug Adm. 2015. https://www.fda.gov/BiologicsBloodVaccines/Allergenics/ucm393806.htm. Accessed August 8, 2017.

  54. Creticos PS, Maloney J, Bernstein DI, et al. Randomized controlled trial of a ragweed allergy immunotherapy tablet in North American and European adults. J Allergy Clin Immunol. 2013;131(5) https://doi.org/10.1016/j.jaci.2013.03.019.

  55. Nolte H, Hébert J, Berman G, et al. Randomized controlled trial of ragweed allergy immunotherapy tablet efficacy and safety in North American adults. Ann Allergy Asthma Immunol. 2013;110(6) https://doi.org/10.1016/j.anai.2013.03.013.

  56. Summary Basis for Regulatory Action. US Food Drug Adm. 2017. https://www.fda.gov/downloads/BiologicsBloodVaccines/Allergenics/UCM548165.pdf. Accessed August 8, 2017.

  57. Compalati E, Passalacqua G, Bonini M, Canonica GW. The efficacy of sublingual immunotherapy for house dust mites respiratory allergy: results of a GA2LEN meta-analysis. Allergy. 2009;64(11):1570–9. https://doi.org/10.1111/j.1398-9995.2009.02129.x.

    Article  CAS  PubMed  Google Scholar 

  58. Feng B, Xiang H, Jin H, et al. Efficacy of sublingual immunotherapy for house dust mite-induced allergic rhinitis: a meta-analysis of randomized controlled trials. Allergy Asthma Immunol Res. 2017;9(3):220–8. https://doi.org/10.4168/aair.2017.9.3.220.

    Article  PubMed  Google Scholar 

  59. • Dretzke J, Meadows A, Novielli N, Huissoon A, Fry-Smith A, Meads C. Subcutaneous and sublingual immunotherapy for seasonal allergic rhinitis: a systematic review and indirect comparison. J Allergy Clin Immunol. 2013;131(5):1361–6. https://doi.org/10.1016/j.jaci.2013.02.013. This is systematic review comparing SLIT and SCIT, highlighting differences via indirect comparisons and demonstrating the lack of head to head trials.

    Article  PubMed  Google Scholar 

  60. Gevaert P, Calus L, Van Zele T, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol. 2013;131(1) https://doi.org/10.1016/j.jaci.2012.07.047.

  61. Pinto JM, Mehta N, DiTineo M, Wang J, Baroody FM, Naclerio RM. A randomized, double-blind, placebo-controlled trial of anti-IgE for chronic rhinosinusitis. Rhinology. 2010;48(3):318–24. https://doi.org/10.4193/Rhin09.144.

    CAS  PubMed  Google Scholar 

  62. Gevaert P, Van Bruaene N, Cattaert T, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol. 2011;128(5) https://doi.org/10.1016/j.jaci.2011.07.056.

  63. Bachert C, Mannent L, Naclerio RM, et al. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA. 2016;315(5):469–79. https://doi.org/10.1001/jama.2015.19330.

    Article  CAS  PubMed  Google Scholar 

  64. Chandra RK, Clavenna M, Samuelson M, Tanner SB, Turner JH. Impact of omalizumab therapy on medication requirements for chronic rhinosinusitis. Int Forum Allergy Rhinol. 2016;6(5):472–7. https://doi.org/10.1002/alr.21685.

    Article  PubMed  Google Scholar 

  65. Vennera MDC, Picado C, Mullol J, Alobid I, Bernal-Sprekelsen M. Efficacy of omalizumab in the treatment of nasal polyps. Thorax. 2011;66:824–5. https://doi.org/10.1136/thx.2010.152835.

    Article  Google Scholar 

  66. Cahill KN, Bensko JC, Boyce JA, Laidlaw TM. Prostaglandin D2: a dominant mediator of aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2015;135(1):245–52. https://doi.org/10.1016/j.jaci.2014.07.031.

    Article  CAS  PubMed  Google Scholar 

  67. Nasser SMS, Pfister R, Christie PE, et al. Inflammatory cell populations in bronchial biopsies from aspirin-sensitive asthmatic subjects. Am J Respir Crit Care Med. 1996;153(1):90–6. https://doi.org/10.1164/ajrccm.153.1.8542168.

    Article  CAS  PubMed  Google Scholar 

  68. Hayashi H, Mitsui C, Nakatani E, et al. Omalizumab reduces cysteinyl leukotriene and 9alpha,11beta-prostaglandin F2 overproduction in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137(5):1585–1587.e4. https://doi.org/10.1016/j.jaci.2015.09.034.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John V Bosso.

Ethics declarations

Conflict of Interest

Dr. Bosso has a research grant from Sanofi pharmaceutical company.

Dr. Glicksman has no conflicts of interest.

Additional information

This article is part of the Topical Collection on Special Topics in Otorhinolaryngology: Otolaryngic Allergy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glicksman, J., Bosso, J.V. New and Emerging Biological Medications for Asthma, Allergic Rhinitis and Chronic Rhinosinusitis: a Concise Review. Curr Otorhinolaryngol Rep 5, 201–211 (2017). https://doi.org/10.1007/s40136-017-0167-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40136-017-0167-z

Keywords

Navigation