Skip to main content
Log in

Anterior Capsulotomy Innovations and Techniques: Review

  • Cataract (CE Starr and A Brissette, Section Editors)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article reviews the current techniques and emerging devices for the creation of an anterior capsulotomy.

Recent Findings

Manual continuous curvilinear capsulorhexis (CCC) remains the most widely used technique and physical tools have been introduced and adopted by surgeons as guides to improve the precision of the manual CCC. Femtosecond-assisted capsulotomy has had moderate adoption by surgeons due to lack of clear evidence demonstrating superior outcomes, cost, and compromised surgical efficiency. However, quick, precise, and reproducible capsulotomies continue to be sought after and several automated devices have and will be introduced.

Conclusion

Manually creating the anterior capsulorhexis remains the gold standard because of efficiency and cost but consistent outcomes require significant experience and technical skill. New automated technologies aim to provide the desired consistency and precision with visual axis centration without compromising surgical workflow. These technologies show promise and may yield superior visual and refractive outcomes but research will be valuable for evaluating these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Abell RG, Davies PEJ, Phelan D, Goemann K, McPherson ZE, Vote BJ. Anterior capsulotomy integrity after femtosecond laser-assisted cataract surgery. Ophthalmology. 2014;121(1):17–24. https://doi.org/10.1016/j.ophtha.2013.08.013.

    Article  PubMed  Google Scholar 

  2. Ali MH, Ullah S, Javaid U, Javaid M, Jamal S, Butt NH. Comparison of characteristics of femtosecond laser-assisted anterior capsulotomy versus manual continuous curvilinear capsulorrhexis: a meta-analysis of 5-year results. J Pak Med Assoc. 2017;67(10):1574–9.

    PubMed  Google Scholar 

  3. Aykan U, Bilge AH, Karadayi K, Akin T. The effect of capsulorhexis size on development of posterior capsule opacification: small (4.5 to 5.0 mm) versus large (6.0 to 7.0 mm). Eur J Ophthalmol. 2003;13(6):541–5.

    Article  CAS  Google Scholar 

  4. Baumeister M, Bühren J, Kohnen T. Tilt and decentration of spherical and aspheric intraocular lenses: effect on higher-order aberrations. J Cataract Refract Surg. 2009;35(6):1006–12. https://doi.org/10.1016/j.jcrs.2009.01.023.

    Article  PubMed  Google Scholar 

  5. Cekiç O, Batman C. The relationship between capsulorhexis size and anterior chamber depth relation. Ophthalmic Surg Lasers. 1999;30(3):185–90.

    PubMed  Google Scholar 

  6. Chang DH, Waring GO. The subject-fixated coaxially sighted corneal light reflex: a clinical marker for centration of refractive treatments and devices. Am J Ophthalmol. 2014;158(5):863–74. https://doi.org/10.1016/j.ajo.2014.06.028.

    Article  PubMed  Google Scholar 

  7. Chang DF, Mamalis N, Werner L. Precision pulse capsulotomy: preclinical safety and performance of a new capsulotomy technology. Ophthalmology. 2016;123(2):255–64. https://doi.org/10.1016/j.ophtha.2015.10.008.

    Article  PubMed  Google Scholar 

  8. Chee S-P, Wong MHY, Jap A. Management of severely subluxated cataracts using femtosecond laser-assisted cataract surgery. Am J Ophthalmol. 2017;173:7–15. https://doi.org/10.1016/j.ajo.2016.09.021.

    Article  PubMed  Google Scholar 

  9. Conrad-Hengerer I, Hengerer FH, Joachim SC, Schultz T, Dick HB. Femtosecond laser-assisted cataract surgery in intumescent white cataracts. J Cataract Refract Surg. 2014;40(1):44–50. https://doi.org/10.1016/j.jcrs.2013.08.044.

    Article  PubMed  Google Scholar 

  10. • Daya S, Chee S-P, Ti S-E, Packard R, Mordaunt DH. Comparison of anterior capsulotomy techniques: continuous curvilinear capsulorhexis, femtosecond laser-assisted capsulotomy and selective laser capsulotomy. Br J Ophthalmol. 2019:bjophthalmol–2018–313421. https://doi.org/10.1136/bjophthalmol-2018-313421This study utilized human cadaver eyes to compare capsular edge strength and demonstrated the superior capsular edge strength of the selective laser capsulotomy compared to manual CCC and FLACS. Manual CCC was superior to FLACS in this study as well.

  11. • Ernest PH, Popovic M, Schlenker MB, Klumpp L, Ahmed IIK. Higher order aberrations in femtosecond laser-assisted versus manual cataract surgery: a retrospective cohort study. J Refract Surg. 2019;35(2):102–8. https://doi.org/10.3928/1081597X-20190107-02This retrospective cohort study provided evidence of significant improvement in higher-order aberrations (e.g., internal coma) with FLACS in comparison to manual cataract surgery. In this same study, the subjective assessment scores revealed that patients that reported excellent satisfaction all had internal coma < 0.20 μm.

    Article  PubMed  Google Scholar 

  12. Friedman NJ, Palanker DV, Schuele G, et al. Femtosecond laser capsulotomy. J Cataract Refract Surg. 2011;37(7):1189–98. https://doi.org/10.1016/j.jcrs.2011.04.022.

    Article  PubMed  Google Scholar 

  13. Gimbel HV, Neuhann T. Development, advantages, and methods of the continuous circular capsulorhexis technique. J Cataract Refract Surg. 1990;16(1):31–7.

    Article  CAS  Google Scholar 

  14. Gimbel HV, Neuhann T. Continuous curvilinear capsulorhexis. J Cataract Refract Surg. 1991;17(1):110–1.

    Article  CAS  Google Scholar 

  15. Hooshmand J, Abell RG, Goemann K, Davies PEJ, Vote BJ. Ultrastructural integrity of human capsulotomies created by a thermal device. Ophthalmology. 2018;125(3):340–4. https://doi.org/10.1016/j.ophtha.2017.09.018.

    Article  PubMed  Google Scholar 

  16. • Hooshmand J, Abell RG, Allen P, Goemann K, Vote BJ. Intraoperative performance and ultrastructural integrity of human capsulotomies created by the improved precision pulse capsulotomy device. Journal of Cataract & Refractive Surgery. 2018;44(11):1333–5. https://doi.org/10.1016/j.jcrs.2018.07.041This follow-up study (original study published in Ophthalmology 29in 2018) demonstrated improved free-floating capsulotomy outcomes with the precision pulse capsulotomy (PPD) device but described persistent elevated rates of radial tears. Authors of this study propose that the radial tear rate may be secondary to a device design issue or focal energy effect from the device.

    Article  Google Scholar 

  17. Izak AM, Werner L, Pandey SK, Apple DJ, Izak MGJ. Analysis of the capsule edge after Fugo plasma blade capsulotomy, continuous curvilinear capsulorhexis, and can-opener capsulotomy. J Cataract Refract Surg. 2004;30(12):2606–11. https://doi.org/10.1016/j.jcrs.2004.05.020.

    Article  PubMed  Google Scholar 

  18. Johnson WJ, Magrath GN, Perry LJP. Rapid anterior capsule contraction after femtosecond laser–assisted cataract surgery in a patient with retinitis pigmentosa. JCRS Online Case Reports. 2019;7(2):23–5. https://doi.org/10.1016/j.jcro.2018.11.001.

    Article  Google Scholar 

  19. • Kahook MY, Cionni RJ, Taravella MJ, et al. Continuous curvilinear capsulorhexis performed with the VERUS ophthalmic caliper. J Refract Surg. 2016;32(10):654–8. https://doi.org/10.3928/1081597X-20160609-02Retrospective study that highlights the improved centration and size of the manual CCC with guidance from the VERUS ophthalmic caliper in comparison to manual, free-hand CCC without guidance.

    Article  PubMed  Google Scholar 

  20. Kránitz K, Takacs A, Miháltz K, Kovács I, Knorz MC, Nagy ZZ. Femtosecond laser capsulotomy and manual continuous curvilinear capsulorrhexis parameters and their effects on intraocular lens centration. J Refract Surg. 2011;27(8):558–63. https://doi.org/10.3928/1081597X-20110623-03.

    Article  PubMed  Google Scholar 

  21. Kránitz K, Miháltz K, Sándor GL, Takacs A, Knorz MC, Nagy ZZ. Intraocular lens tilt and decentration measured by Scheimpflug camera following manual or femtosecond laser-created continuous circular capsulotomy. J Refract Surg. 2012;28(4):259–63. https://doi.org/10.3928/1081597X-20120309-01.

    Article  PubMed  Google Scholar 

  22. Lee YE, Joo C-K. Open ring-shaped guider for circular continuous curvilinear capsulorhexis during cataract surgery. J Cataract Refract Surg. 2015;41(7):1349–52. https://doi.org/10.1016/j.jcrs.2015.06.004.

    Article  PubMed  Google Scholar 

  23. • Lee JH, Lee YE, Joo C-K. Clinical results of the open ring PMMA guider assisted capsulorrhexis in cataract surgery. BMC Ophthalmol. 2018;18(1):116. https://doi.org/10.1186/s12886-018-0782-6This retrospective, clinical study demonstrated improved accuracy and circularity of the capsulotomy with guidance from the open ring–shaped guider for CCC (ORGC) in comparison to a manual, free-hand approach without guidance from a physical tool.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Manning S, Barry P, Henry Y, et al. Femtosecond laser-assisted cataract surgery versus standard phacoemulsification cataract surgery: study from the European registry of quality outcomes for cataract and refractive surgery. J Cataract Refract Surg. 2016;42(12):1779–90. https://doi.org/10.1016/j.jcrs.2016.10.013.

    Article  PubMed  Google Scholar 

  25. McKelvie J, McArdle B, McGhee C. The influence of tilt, decentration, and pupil size on the higher-order aberration profile of aspheric intraocular lenses. Ophthalmology. 2011;118(9):1724–31. https://doi.org/10.1016/j.ophtha.2011.02.025.

    Article  PubMed  Google Scholar 

  26. Miháltz K, Knorz MC, Alió JL, Takács AI, Kránitz K, Kovács I, et al. Internal aberrations and optical quality after femtosecond laser anterior capsulotomy in cataract surgery. J Refract Surg. 2011;27(10):711–6. https://doi.org/10.3928/1081597X-20110913-01.

    Article  PubMed  Google Scholar 

  27. Nagy Z, Takacs A, Filkorn T, Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg. 2009;25(12):1053–60. https://doi.org/10.3928/1081597X-20091117-04.

    Article  PubMed  Google Scholar 

  28. Nagy ZZ, Kránitz K, Takács AI, Miháltz K, Kovács I, Knorz MC. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J Refract Surg. 2011;27(8):564–9. https://doi.org/10.3928/1081597X-20110607-01.

    Article  PubMed  Google Scholar 

  29. • Pandey SK, Sharma V. Zepto-rhexis: a new surgical technique of capsulorhexis using precision nano-pulse technology in difficult cataract cases. Indian J Ophthalmol. 2018;66(8):1165–8. https://doi.org/10.4103/ijo.IJO_1006_17This small case series of challenging cataract cases demonstrates the utility of the precision pulse capsulotomy (PPC) device in more difficult cataract cases in which performing a precise capsulorhexis with a manual approach has heightened difficulty.

    Article  PubMed  PubMed Central  Google Scholar 

  30. • Popovic M, Campos-Möller X, Schlenker MB, Ahmed IIK. Efficacy and safety of femtosecond laser-assisted cataract surgery compared with manual cataract surgery: a meta-analysis of 14 567 eyes. Ophthalmology. 2016;123(10):2113–26. https://doi.org/10.1016/j.ophtha.2016.07.005An important meta-analysis comparing manual CCC versus FLACS in achieving superior refractive and visual outcomes; this review highlights that both conventional, manual CCC, and FLACS produce excellent outcomes and did not demonstrate superior outcomes with FLACS.

    Article  PubMed  Google Scholar 

  31. Rao GN, Khanna R, Payal A. The global burden of cataract. Curr Opin Ophthalmol. 2011;22(1):4–9. https://doi.org/10.1097/ICU.0b013e3283414fc8.

    Article  PubMed  Google Scholar 

  32. Ravalico G, Tognetto D, Palomba M, Busatto P, Baccara F. Capsulorhexis size and posterior capsule opacification. J Cataract Refract Surg. 1996;22(1):98–103.

    Article  CAS  Google Scholar 

  33. Reyes Lua M, Oertle P, Camenzind L, Goz A, Meyer CH, Konieczka K, et al. Superior rim stability of the lens capsule following manual over femtosecond laser capsulotomy. Invest Ophthalmol Vis Sci. 2016;57(6):2839–49. https://doi.org/10.1167/iovs.15-18355.

    Article  CAS  PubMed  Google Scholar 

  34. Roberts TV, Lawless M, Sutton G, Hodge C. Anterior capsule integrity after femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. 2015;41(5):1109–10. https://doi.org/10.1016/j.jcrs.2014.11.044.

    Article  PubMed  Google Scholar 

  35. Roberts HW, Wagh VK, Mullens IJM, Borsci S, Ni MZ, O'Brart DPS. Evaluation of a hub-and-spoke model for the delivery of femtosecond laser-assisted cataract surgery within the context of a large randomised controlled trial. Br J Ophthalmol. 2018;102(11):1556–63. https://doi.org/10.1136/bjophthalmol-2017-311319.

    Article  PubMed  Google Scholar 

  36. • Roberts HW, Wagh VK, Sullivan DL, et al. A randomized controlled trial comparing femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery. J Cataract Refractive Surg. 2019;45(1):11–20. https://doi.org/10.1016/j.jcrs.2018.08.033Well-designed, randomized trial comparing FLACS versus conventional phacoemulsification that provides additional evidence demonstrating the lack of superiority in visual and refractive outcomes with FLACS compared to conventional phacoemulsification.

    Article  Google Scholar 

  37. Rostami B, Tian J, Jackson N, Karanjia R, Lu K. High rate of early posterior capsule opacification following femtosecond laser-assisted cataract surgery. Case Rep Ophthalmol. 2016;7(3):213–7. https://doi.org/10.1159/000449124.

    Article  PubMed  PubMed Central  Google Scholar 

  38. • Schojai M, Schultz T, Burkhard DH. Capsule-fixated intraocular Lens implantation in small pupil cases. J Refract Surg. 2017;33(8):568–70. https://doi.org/10.3928/1081597X-20170620-01This report describes a surgical technique in small pupil cases utilizing a capsule-fixated IOL. This IOL design may convey better IOL stability and predicted lens positioning postoperatively.

    Article  PubMed  Google Scholar 

  39. Scott WJ. Re: Abell et al.: anterior capsulotomy integrity after femtosecond laser-assisted cataract surgery (ophthalmology 2014;121:17-24). Ophthalmology. 2014;121(7):e35–6. https://doi.org/10.1016/j.ophtha.2014.02.014.

    Article  PubMed  Google Scholar 

  40. Smith SR, Daynes T, Hinckley M, Wallin TR, Olson RJ. The effect of lens edge design versus anterior capsule overlap on posterior capsule opacification. Am J Ophthalmol. 2004;138(4):521–6. https://doi.org/10.1016/j.ajo.2004.04.028.

    Article  PubMed  Google Scholar 

  41. • Stodulka P, Packard R, Mordaunt D. Efficacy and safety of a new selective laser device to create anterior capsulotomies in cataract patients. J Cataract Refractive Surg. 2019;45(5):601–7. https://doi.org/10.1016/j.jcrs.2018.12.012Prospective, clinical study that demonstrates the safety and efficacy of the recently introduced CAPSULaser, or selective laser capsulotomy. Improved precision, centration, was achieved with the selective laser capsulotomy in comparison to manual CCC.

    Article  Google Scholar 

  42. Tabernero J, Piers P, Benito A, Redondo M, Artal P. Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration. Invest Ophthalmol Vis Sci. 2006;47(10):4651–8. https://doi.org/10.1167/iovs.06-0444.

    Article  PubMed  Google Scholar 

  43. Taketani F, Matuura T, Yukawa E, Hara Y. Influence of intraocular lens tilt and decentration on wavefront aberrations. J Cataract Refract Surg. 2004;30(10):2158–62. https://doi.org/10.1016/j.jcrs.2004.02.072.

    Article  PubMed  Google Scholar 

  44. • Thompson VM. Rate of complete capsulotomies from precision pulse technology. J Cataract Refractive Surg. 2018;44(8):1055. https://doi.org/10.1016/j.jcrs.2018.07.001This article discusses surgical techniques with the precision pulse capsulotomy (PPD) device and highlights the importance of ophthalmic viscosurgical device (OVD) choice in preventing complications when using the precision pulse capsulotomy device. It also noted the possibility of a learning curve with the PPD and the importance of completing full suction prior to the capsulotomy.

    Article  Google Scholar 

  45. • Thompson V. Streamlined method for anchoring cataract surgery and intraocular lens centration on the patient's visual axis. J Cataract Refractive Surg. 2018;44(5):528–33. https://doi.org/10.1016/j.jcrs.2018.02.013This report describes the novel surgical technique of utilizing the Zepto precision pulse capsulotomy device to intraoperatively anchor the patient’s visual axis using coaxial microscope optics and patient fixation. This technique may be of particular importance in using multifocal or extended-range-of-vision IOLs that are more sensitive to changes in tilt, positioning.

    Article  Google Scholar 

  46. Thompson VM, Berdahl JP, Solano JM, Chang DF. Comparison of manual, femtosecond laser, and precision pulse capsulotomy edge tear strength in paired human cadaver eyes. Ophthalmology. 2016;123(2):265–74. https://doi.org/10.1016/j.ophtha.2015.10.019.

    Article  PubMed  Google Scholar 

  47. Tran DB, Vargas V, Potvin R. Neodymium:YAG capsulotomy rates associated with femtosecond laser-assisted versus manual cataract surgery. J Cataract Refract Surg. 2016;42(10):1470–6. https://doi.org/10.1016/j.jcrs.2016.08.019.

    Article  PubMed  Google Scholar 

  48. Wallace RB. Capsulotomy diameter mark. J Cataract Refract Surg. 2003;29(10):1866–8.

    Article  Google Scholar 

  49. Waltz K, Thompson VM, Quesada G. Precision pulse capsulotomy: initial clinical experience in simple and challenging cataract surgery cases. J Cataract Refract Surg. 2017;43(5):606–14. https://doi.org/10.1016/j.jcrs.2017.01.023.

    Article  PubMed  Google Scholar 

  50. Wiley WF, Bafna S, Jones JJ. Optical coherence topography-guided capsule bag-centered femtosecond laser capsule. San Francisco, CA: Presented at: American Society of Cataract & Refractive Surgery; 2013.

    Google Scholar 

  51. Woodward MA, Randleman JB, Stulting RD. Dissatisfaction after multifocal intraocular lens implantation. J Cataract Refract Surg. 2009;35(6):992–7. https://doi.org/10.1016/j.jcrs.2009.01.031.

    Article  PubMed  PubMed Central  Google Scholar 

  52. • Zhu Y, Chen X, Chen P, et al. Lens capsule-related complications of femtosecond laser-assisted capsulotomy versus manual capsulorhexis for white cataracts. J Cataract Refractive Surg. 2019;45(3):337–42. https://doi.org/10.1016/j.jcrs.2018.10.037This study provides evidence supporting the use of femtosecond-laser assisted capsulotomy in white cataracts with reduced risk of anterior capsule tears and enhanced precision and IOL centration.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanner J. Ferguson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cataract

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, T.J., Wiley, W.F. Anterior Capsulotomy Innovations and Techniques: Review. Curr Ophthalmol Rep 7, 233–240 (2019). https://doi.org/10.1007/s40135-019-00219-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-019-00219-8

Keywords

Navigation