Advancements in Diagnostics with Glaucomatous and Other Optic Neuropathies

  • Mark P. Breazzano
  • Shaniece A. Walker
  • Reid A. Longmuir
Diagnosis and Monitoring of Glaucoma (R Kuchtey, Section Editor)
  • 8 Downloads
Part of the following topical collections:
  1. Diagnosis and Monitoring of Glaucoma

Abstract

Purpose of Review

The goal of this article is to present updates to the physician with the latest developments in diagnosing and monitoring optic nerve diseases. Possible changes to clinical practice regarding these advancements are also explored.

Recent Findings

There has been substantial progress in research and clinical practice regarding diagnostic capabilities for optic neuropathies. Optical coherence tomographic angiography may soon have a particularly strong impact on transforming the way glaucomatous optic neuropathy is routinely evaluated. Multiple developments have also occurred regarding assessment of optic nerve structure via optical coherence tomography, functional testing with visual fields, neuroimaging, and laboratory investigation for a variety of optic neuropathies. New and basic clinical techniques for approaching uncommon optic nerve disease entities are also described.

Summary

Assessing optic neuropathies can be clinically challenging. The availability of a multitude of new approaches and diagnostics may assist the physician with more accurate diagnosis and monitoring capabilities.

Keywords

Optic neuropathy diagnosis Optical coherence tomography Visual field algorithm Glaucoma monitoring 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jarius S, Wildemann B. The history of neuromyelitis optica. J Neuroinflammation. 2013;10:8.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Andersson S, Heijl A, Bizios D, Bengtsson B. Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma. Acta Ophthalmol. 2013;91:413–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Bodanapally UK, Van der Byl G, Shanmuganathan K, Katzman L, Geraymovych E, Saksobhavivat N, et al. Traumatic optic neuropathy prediction after blunt facial trauma: derivation of a risk score based on facial CT findings at admission. Radiology. 2014;272:824–31.CrossRefPubMedGoogle Scholar
  4. 4.
    Frisen L. Identification of functional visual field loss by automated static perimetry. Acta Ophthalmol. 2014;92:805–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Biousse V, Newman NJ. Diagnosis and clinical features of common optic neuropathies. Lancet Neurol. 2016;15:1355–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Chang DS, Xu L, Boland MV, Friedman DS. Accuracy of pupil assessment for the detection of glaucoma: a systematic review and meta-analysis. Ophthalmology. 2013;120(11):2217–25.  https://doi.org/10.1016/j.ophtha.2013.04.012.CrossRefPubMedGoogle Scholar
  7. 7.
    Lawlor M, Quartilho A, Bunce C, Nathwani N, Dowse E, Kamal D, et al. Patients with normal tension glaucoma have relative sparing of the relative afferent pupillary defect compared to those with open angle glaucoma and elevated intraocular pressure. Invest Ophthalmol Vis Sci. 2017;58:5237–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Breazzano MP, Mawn LA, Kuchtey RW. Spontaneous resolution of presumed idiopathic elevated episcleral venous pressure. J Glaucoma. 2016;25:e751–2.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Viswanathan D, Goldberg I, Graham SL. Relationship of change in central corneal thickness to visual field progression in eyes with glaucoma. Graefes Arch Clin Exp Ophthalmol. 2013;251:1593–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Khawaja AP, Chan MPY, Broadway DC, Garway-Heath DF, Luben R, Yip JLY, et al. Corneal biomechanical properties and glaucoma-related quantitative traits in the EPIC-Norfolk Eye Study. Invest Ophthalmol Vis Sci. 2014;55:117–24.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tojo N, Abe S, Ishida M, Yagou T, Hayashi A. The fluctuation of intraocular pressure measured by contact lens sensor in normal-tension glaucoma patients and nonglaucoma subjects. J Glaucoma. 2017;26(3):195–200.CrossRefPubMedGoogle Scholar
  12. 12.
    Bowe A, Grunig M, Schubert J, Demir M, Hoffmann V, Kutting F, et al. Circadian variation in arterial blood pressure and glaucomatous optic neuropathy—a systematic review and meta-analysis. Am J Hypertension. 2015;28(9):1077–82.CrossRefGoogle Scholar
  13. 13.
    Perez-Rico C, Gutierrez-Diaz E, Mencia-Gutierrez E, Diaz-de-Atauri MJ, Blanco R. Obstructive sleep apnea-hypopnea syndrome (OSAHS) and glaucomatous optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2014;252:1345–57.CrossRefPubMedGoogle Scholar
  14. 14.
    Porciatti V, Feuer WJ, Monsalve P, Triolo G, Vazquez L, McSoley J, et al. Head-down posture in glaucoma suspects induces changes in IOP, systemic pressure, and PERG that predict future loss of optic nerve tissue. J Glaucoma. 2017;26:459–65.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu S, Wang B, Yin B, Milner TE, Markey MK, McKinnon SJ, et al. Retinal nerve fiber layer reflectance for early glaucoma diagnosis. J Glaucoma. 2014;23(1):1–22.CrossRefGoogle Scholar
  16. 16.
    Hammel N, Belghith A, Bowd C, Medeiros FA, Sharpsten L, Mendoza N, et al. Rate and pattern of rim area loss in healthy and progressing glaucoma eyes. Ophthalmology. 2016;123(4):760–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim KE, Jeoung JW, Park KH, Kim DM, Kim SH. Diagnostic classification of macular ganglion cell and retinal nerve fiber layer analysis: differentiation of false-positives from glaucoma. Ophthalmology. 2015;122:502–10.CrossRefPubMedGoogle Scholar
  18. 18.
    Mousa MF, Cubbidge RP, Al-Mansouri F, Bener A. Evaluation of hemifield sector analysis protocol in multifocal visual evoked potential objective perimetry for the diagnosis and early detection of glaucomatous field defects. Korean J Ophthalmol. 2014;28(1):49–65.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nouri-Mahdavi K. Selecting visual field tests and assessing visual field deterioration in glaucoma. Can J Ophthalmol. 2014;49:497–505.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaczorowski K, Mulak M, Szumny D, Misiuk-Hojlo M. Heidelberg edge perimeter: the new method of perimetry. Adv Clin Exp Med. 2015;24(6):1105–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Hashimoto S, Matsumoto C, Okuyama S, Takada S, Arimura-Koike E, Shimomura Y. Development of a new fully automated kinetic algorithm (program K) for detection of glaucomatous visual field loss. Invest Ophthalmol Vis Sci. 2015;56:2092–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Hollo G. Progressive decrease of peripapillary angioflow vessel density during structural and visual field progression in early primary open-angle glaucoma. J Glaucoma. 2017;26:661–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Lavinsky F, Wollstein G, Tauber J, Schuman JS. The future of imaging in detecting glaucoma progression. Ophthalmology. 2017;124:S76–82.CrossRefPubMedGoogle Scholar
  24. 24.
    • Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F, Sacconi R, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58:5713–22. This study suggests that structural damage may occur before angiographic changes in the peripapillary area of glaucoma suspects. CrossRefPubMedGoogle Scholar
  25. 25.
    De Moraes CG, Liebmann JM, Levin LA. Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma. Prog Retin Eye Res. 2017;56:107–47.CrossRefPubMedGoogle Scholar
  26. 26.
    HannaMaria O, Anders H, Lena B, Anderson H, Boel B. Structural and functional progression in the Early Manifest Glaucoma Trial. Ophthalmology. 2016;123(6):1173–80.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ohnell H, Heijl A, Anderson H, Bengtsson B. Detection of glaucoma progression by perimetry and optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma Trial. Acta Ophthalmol. 2017;95:281–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Chuahan BC, Malik R, Shuba LM, Rafuse PE, Nicolela MT, Artes PH. Rate of glaucomatous visual field change in a large clinical population. Invest Ophthalmol Vis Sci. 2014;55:4135–43.CrossRefGoogle Scholar
  29. 29.
    Rao A, Padhy D, Mudunuri H, Roy AK, Sarangi SP, Das G. Central field index versus visual field index for central visual function in stable glaucoma. J Glaucoma. 2017;26:1–7.CrossRefPubMedGoogle Scholar
  30. 30.
    De Moraes CG, Hood DC, Thenappan A, Girkin CA, Medeiros FA, Weinreb RN, et al. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma. Ophthalmology. 2017;124:1449–56.CrossRefPubMedGoogle Scholar
  31. 31.
    Sullivan-Mee M, Tran MTK, Pensyl D, Tsan G, Katiyar S. Prevalence, features, and severity of glaucomatous visual field loss measured with the 10-2 achromatic threshold visual field test. Am J Ophthalmol. 2016;168:40–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Diniz-Filho A, Delano-Wood L, Daga FB, Cronemberger S, Medeiros FA. Association between neurocognitive decline and visual field variability in glaucoma. JAMA Ophthalmol. 2017;135(7):734–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Takahashi M, Omodaka K, Maruyama K, Yamaguchi T, Himori N, Shiga Y, et al. Simulated visual fields produced from macular RNFLT data in patients with glaucoma. Curr Eye Res. 2013;38(11):1133–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Ishiyama Y, Murata H, Mayama C, Asaoka R. An objective evaluation of gaze tracking in Humphrey perimetry and the relation with the reproducibility of visual fields: a pilot study in glaucoma. Invest Ophthalmol Vis Sci. 2014;55:8149–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Wall M, Doyle CK, Zamba KD, Artes P, Johnson CA. The repeatability of mean defect with size III and size V standard automated perimetry. Invest Ophthalmol Vis Sci. 2013;54:1345–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Erler NS, Bryan SR, Eilers PHC, Lesaffre EMEH, Lemij HG, Vermeer KA. Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical nerve fiber models. Invest Ophthalmol Vis Sci. 2014;55:2350–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Kaushik S, Mulkutkar S, Pandav SS, Verma N, Gupta A. Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fiber layer attenuation measured by optical coherence tomography. Int Ophthalmol. 2015;35:95–106.CrossRefPubMedGoogle Scholar
  38. 38.
    Vianna JR, Chauhan BC. How to detect progression in glaucoma. Prog Brain Res. 2015;221:135–58.CrossRefPubMedGoogle Scholar
  39. 39.
    Hood DC, De Moraes CG. Challenges to the common clinical paradigm for diagnosis of glaucomatous damage with OCT and visual fields. Invest Ophthalmol Vis Sci. 2018;59:788–91.CrossRefPubMedGoogle Scholar
  40. 40.
    Lee EJ, Kim T, Kim J, Kim J. Parapapillary deep-layer microvasculature dropout in primary open-angle glaucoma eyes with a parapapillary gamma-zone. Invest Ophthalmol Vis Sci. 2017;58:5673–80.CrossRefPubMedGoogle Scholar
  41. 41.
    Geyman LS, Garg RA, Suwan Y, Trivedi V, Krawitz BD, Mo S, et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optic coherence tomography angiography study. Br J Ophthalmol. 2017;101:1261–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Yarmohammadi A, Zangwill LM, Manalastas PIC, Fuller NJ, Diniz-Filho A, Saunders LJ, Suh MH, Hasenstab K, Weinreb RN. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology 2017; 1–10.Google Scholar
  43. 43.
    Gungor SG, Akman A. Are all retinal nerve fiber layer defects on optic coherence tomography glaucomatous? Turk J Ophthalmol. 2017;47:267–73.Google Scholar
  44. 44.
    Arnold AC. The 14th Hoyt lecture: ischemic optic neuropathy: the evolving profile, 1966-2015. J Neuroophthalmol. 2016;36:208–15.CrossRefPubMedGoogle Scholar
  45. 45.
    Wright Mayes E, Cole ED, Dang S, Novais EA, Vuong L, Mendoza-Santiesteban C, Duker JS, Hedges TR 3rd. Optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol 2017 Dec; 37(4):358–364.Google Scholar
  46. 46.
    Hayreh SS, Zimmerman MB. Amaurosis fugax in ocular vascular occlusive disorders: prevalence and pathogenesis. Retina. 2014;34:115–22.CrossRefPubMedGoogle Scholar
  47. 47.
    Hayreh SS. Ocular vascular occlusive disorders: natural history of visual outcome. Prog Retin Eye Res. 2014;0:1–25.CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Padovano I, Pazzola G, Pipitone N, Cimino L, Salvarani C. Anterior ischemic optic neuropathy in eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome): a case report and review of the literature. Clin Exp Rheumatol. 2014;32(Suppl. 82):S62–5.PubMedGoogle Scholar
  49. 49.
    Maik TG, Khalil M, Ijaz AU, Bhatti MM. Ocular ischemic syndrome and ischemic optic neuropathy in Takayasu arteritis. J Coll Physicians Surg Pak. 2015 Apr;25(Suppl 1):S47–9.Google Scholar
  50. 50.
    Yu PK, McAllister IL, Morgan WH, Cringle SJ, Yu D. Inter-relationship of arterial supply to human retina, choroid, and optic nerve head using micro perfusion and labeling. Invest Ophthalmol Vis Sci. 2017;58:3565–74.CrossRefPubMedGoogle Scholar
  51. 51.
    Suprasanna K, Shetty CM, Charudutt S, Kadavigere R. Doppler evaluation of ocular vessels in patients with primary open angle glaucoma. J Clin Ultrasound. 2014;42:486–91.CrossRefPubMedGoogle Scholar
  52. 52.
    Breazzano MP, Benegas NM. Multiple and bilateral cilioretinal arteries with Shwachman-Diamond syndrome. Ophthalmology. 2017;124(9):1352.CrossRefPubMedGoogle Scholar
  53. 53.
    Sahraian MA, Moghadasi AN, Azimi AR, Asgari N, Akhoundi FH, Abolfazli R, et al. Diagnosis and management of Neuromyelitis Optica Spectrum Disorder (NMOSD) in Iran: a consensus guideline and recommendations. Multiple Scler Relat Disord. 2017;18:144–51.CrossRefGoogle Scholar
  54. 54.
    Yuan L, Prayson RA. Optic nerve aspergillosis. J Clin Neurosci. 2015 Jul;22(7):1191–3.CrossRefPubMedGoogle Scholar
  55. 55.
    Breazzano MP, Lewis JS Jr, Chambless LB, Rohde SL, Sobel RK. Remote orbital recurrence of olfactory neuroblastoma (esthesioneuroblastoma). Orbit 2017; 36(4):247–250.Google Scholar
  56. 56.
    •• Vuong LN, Hedges TRIII. Ganglion cell layer complex measurements in compressive optic neuropathy. Curr Opin Ophthalmol. 2017;28:573–8. For currently unclear reasons, visual field loss can recover following relief of compressive optic neuropathy, despite ganglion cell complex thinning as measured by optical coherence tomography. CrossRefPubMedGoogle Scholar
  57. 57.
    Yu-Wai-Man P. Traumatic optic neuropathy—clinical features and management issues. Taiwan J Ophthalmol. 2015;5:3–8.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Breazzano MP, Law JC, Lavin PJ. Simultaneous traumatic central retinal artery occlusion and optic neuropathy. Ophthalmology. 2017 Nov;124(11):1661.CrossRefPubMedGoogle Scholar
  59. 59.
    Linden C, Qvarlander S, Johannesson G, Johansson E, Ostlund F, Malm J, et al. Normal-tension glaucoma has normal intracranial pressure. Ophthalmology. Oct 2017:1–8.Google Scholar
  60. 60.
    Jiang P, Liang M, Zhang J, Gao Y, He Z, Yu H, et al. Prevalence of mitochondrial ND4 mutations in 1281 Han Chinese subjects with Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2015;56:4778–88.CrossRefPubMedGoogle Scholar
  61. 61.
    Chen J, Xu K, Zhang X, Jiang F, Liu L, Dong B, et al. Mutation screening of mitochondrial DNA as well as OPA1 and OPA3 in a Chinese cohort with suspected hereditary optic atrophy. Invest Ophthalmol Vis Sci. 2014;55:6987–95.CrossRefPubMedGoogle Scholar
  62. 62.
    Haines SR, Longmuir RA. Optic neuropathy due to biotinidase deficiency in a 19-year-old man. JAMA Ophthalmol. 2014;132(2):228–30.CrossRefPubMedGoogle Scholar
  63. 63.
    Sane M, Chelnis J, Kozielski R, Fasiuddin A. Immunoglobulin G4-related sclerosing disease with orbital inflammation in a 12-year-old girl. JAAPOS. 2013;17:548–50.Google Scholar
  64. 64.
    Takahashi Y, Kitamura A, Kakizaki H. Bilateral optic nerve involvement in immunoglobulin G4-related ophthalmic disease. J Neuro-Ophthalmology. 2014;34:16–9.CrossRefGoogle Scholar
  65. 65.
    Woo YJ, Kim JW, Yoon JS. Clinical implications of serum IgG4 levels in patients with IgG4-related ophthalmic disease. Br J Ophthalmol. 2016:256–60.Google Scholar
  66. 66.
    Breazzano MP, Durrani AK, Kim SJ. HHV-1,-2,-3: precise medical management of herpetic nodular anterior scleritis. Ophthalmology Times, 2017.Google Scholar
  67. 67.
    Bae JW, Kim YH, Kim S, Wang K, Shin H, Kang H, et al. Langerhans cell histiocytosis causing acute optic neuropathy. Childs Nerv Syst. 2015;31:615–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Breazzano MP, Unkrich KH, Barker-Griffith AE. Clinicopathological findings in abusive head trauma: analysis of 110 infant autopsy eyes. Am J Ophthalmol. 2014;158:1146–54.CrossRefPubMedGoogle Scholar
  69. 69.
    Kim JL, Mendoza P, Rashid A, Hayek B, Grossniklaus HE. Optic nerve lymphoma: report of two cases and review of the literature. Surv Ophthalmol. 2015;60(2):153–65.CrossRefPubMedGoogle Scholar
  70. 70.
    Chin EK, Almeida DRP, Lam KV, Keltner JL, Thirkill CE. Positive auto-antibody activity with retina and optic nerve in smokers and non-smokers: the controversy continues. Ophthalmic Surg Lasers Imaging Retina. 2015;46:1068–70.CrossRefPubMedGoogle Scholar
  71. 71.
    Mantopoulo D, Hendershot AJ, Cebulla CM, Hirsh DK. Bilateral optic neuropathy following bite from brown recluse spider (Loxosceles reclusa). Cutan Ocul Toxicol. 2016;35(2):168–72.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mark P. Breazzano
    • 1
  • Shaniece A. Walker
    • 2
  • Reid A. Longmuir
    • 1
    • 3
  1. 1.Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical CenterVanderbilt University School of MedicineNashvilleUSA
  2. 2.Meharry Medical CollegeNashvilleUSA
  3. 3.Divisions of Glaucoma and Neuro-Ophthalmology, Vanderbilt Eye Institute, Vanderbilt University Medical CenterVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations