Skip to main content

Advertisement

Log in

Swept Source Optical Coherence Tomography: a Review

  • Retina (J Fortun, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we shall attempt to explain the physics behind swept source-optical coherence tomography (SS-OCT), the advantages and disadvantages of SS-OCT when compared with spectral domain-optical coherence tomography (SD-OCT), and the current clinical applications of SS-OCT.

Recent Findings

SS-OCT offers improvements in visualizing the vitreous, retina, choroid, and sclera. The increased scan speeds, decreased signal attenuation, and deeper tissue penetration make SS-OCT ideal for capturing wide fields of view and for studying structures below the RPE, especially the choroid.

Summary

SS-OCT is an exciting new technology offering enhanced visualization of ocular structures. However, its everyday clinical utility remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81. https://doi.org/10.1126/science.1957169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res. 2008;27(1):45–88. https://doi.org/10.1016/j.preteyeres.2007.07.005.

    Article  PubMed  Google Scholar 

  3. Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. (Chicago, Ill: 1960). 1994;112(12):1584–9. https://doi.org/10.1001/archopht.1994.01090240090031.

  4. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmol. 1995;102(2):217–29. https://doi.org/10.1016/S0161-6420(95)31032-9.

  5. Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA, Fujimoto JG, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol. 1995;6(2):89–95. https://doi.org/10.1097/00055735-199504000-00014.

  6. Drexler W, Morgner U, Ghanta RK, Kartner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med. 2001;7(4):502–7. https://doi.org/10.1038/86589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002;7(3):457–63. https://doi.org/10.1117/1.1482379.

    Article  PubMed  Google Scholar 

  8. Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003;11(8):889–94. https://doi.org/10.1364/OE.11.000889.

    Article  CAS  PubMed  Google Scholar 

  9. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28(21):2067–9. https://doi.org/10.1364/OL.28.002067.

    Article  PubMed  Google Scholar 

  10. Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11(18):2183–9. https://doi.org/10.1364/OE.11.002183.

    Article  PubMed  Google Scholar 

  11. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22(5):340–2. https://doi.org/10.1364/OL.22.000340.

    Article  CAS  PubMed  Google Scholar 

  12. Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Opt Lett. 1997;22(22):1704–6. https://doi.org/10.1364/OL.22.001704.

    Article  CAS  PubMed  Google Scholar 

  13. Yun SH, Tearney GJ, Bouma BE, Park BH, de Boer JF. High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength. Opt Express. 2003;11(26):3598–604. https://doi.org/10.1364/OE.11.003598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, et al. Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina. 2010;30(2):235–45. https://doi.org/10.1097/IAE.0b013e3181bd2c3b.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Klein T, Wieser W, Reznicek L, Neubauer A, Kampik A, Huber R. Multi-MHz retinal OCT. Biomed Opt Express. 2013;4(10):1890–908. https://doi.org/10.1364/BOE.4.001890.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang Q, Chen CL, Chu Z, Zheng F, Miller A, Roisman L, et al. Automated quantitation of choroidal neovascularization: a comparison study between spectral-domain and swept-source OCT angiograms. Invest Ophthalmol Vis Sci. 2017;58(3):1506–13. https://doi.org/10.1167/iovs.16-20977.

  17. Potsaid B, Baumann B, Huang D, Barry S, Cable AE, Schuman JS, et al. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010;18(19):20029–48. https://doi.org/10.1364/OE.18.020029.

  18. • Novais EA, Adhi M, Moult EM, Louzada RN, Cole ED, Husvogt L, et al. Choroidal neovascularization analyzed on ultrahigh-speed swept-source optical coherence tomography angiography compared to spectral-domain optical coherence tomography angiography. Am J Ophthalmol. 2016;164:80–8. This study showed that SS-OCTA yielded significantly larger CNV areas than SD OCTA, suggesting that SS-OCTA was superior at demarcating the full extent of the CNV vasculature

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miller AR, Roisman L, Zhang Q, Zheng F, Rafael de Oliveira Dias J, Yehoshua Z, et al. Comparison between spectral-domain and swept-source optical coherence tomography angiographic imaging of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2017;58(3):1499–505. https://doi.org/10.1167/iovs.16-20969.

  20. Adhi M, Liu JJ, Qavi AH, Grulkowski I, Lu CD, Mohler KJ, et al. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol. 2014;157(6):1272–81 e1. https://doi.org/10.1016/j.ajo.2014.02.034.

  21. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496–500. https://doi.org/10.1016/j.ajo.2008.05.032.

    Article  PubMed  Google Scholar 

  22. Carrasco-Zevallos OM, Keller B, Viehland C, et al. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography. Sci Rep. 2016;6:31689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Carlo TE, Romano A, Waheed NK, Duker JS. A review of 515 optical coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015;1:5.

  24. Lee B, Choi W, Liu JJ, Lu CD, Schuman JS, Wollstein G, et al. Cardiac-gated En Face Doppler measurement of retinal blood flow using swept-source optical coherence tomography at 100,000 axial scans per second. Invest Ophthalmol Vis Sci. 2015;56(4):2522–30. https://doi.org/10.1167/iovs.14-16119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee B, Novais EA, Waheed NK, Adhi M, de Carlo TE, Choi W, et al. En Face Doppler OCT measurement of total retinal blood flow in eyes with diabetic retinopathy and diabetic macular edema. Invest Ophthalmol Vis Sci. 2016;57(12):5921.

    Google Scholar 

  26. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci. 2010;51(4):2173–6. https://doi.org/10.1167/iovs.09-4383.

    Article  PubMed  Google Scholar 

  27. Adhi M, Ferrara D, Mullins RF, Baumal CR, Mohler KJ, Kraus MF, et al. Characterization of choroidal layers in normal aging eyes using enface swept-source optical coherence tomography. PLoS One. 2015;10(7):e0133080. https://doi.org/10.1371/journal.pone.0133080.

  28. Ferrara D, Waheed NK, Duker JS. Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res. 2016;52:130–55. https://doi.org/10.1016/j.preteyeres.2015.10.002.

    Article  PubMed  Google Scholar 

  29. Zheng F, Gregori G, Schaal KB, Legarreta AD, Miller AR, Roisman L, et al. Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging. Invest Ophthalmol Vis Sci. 2016;57(14):6256–64. https://doi.org/10.1167/iovs.16-20161.

  30. Campos A, Campos EJ, Martins J, Ambrósio AF, Silva R. Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema. Acta Ophthalmol. 2017;95(5):446–59. https://doi.org/10.1111/aos.13210.

    Article  PubMed  Google Scholar 

  31. Esmaeelpour M, Brunner S, Ansari-Shahrezaei S, Nemetz S, Povazay B, Kajic V, et al. Choroidal thinning in diabetes type 1 detected by 3-dimensional 1060 nm optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(11):6803–9. https://doi.org/10.1167/iovs.12-10314.

    Article  PubMed  Google Scholar 

  32. Esmaeelpour M, Ansari-Shahrezaei S, Glittenberg C, Nemetz S, Kraus MF, Hornegger J, et al. Choroid, Haller’s, and Sattler’s layer thickness in intermediate age-related macular degeneration with and without fellow neovascular eyes. Invest Ophthalmol Vis Sci. 2014;55(8):5074–80. https://doi.org/10.1167/iovs.14-14646.

  33. Esmaeelpour M, Kajic V, Zabihian B, Othara R, Ansari-Shahrezaei S, Kellner L, et al. Choroidal Haller’s and Sattler’s layer thickness measurement using 3-dimensional 1060-nm optical coherence tomography. PLoS One. 2014;9(6):e99690. https://doi.org/10.1371/journal.pone.0099690.

  34. Michalewska Z, Michalewski J, Adelman RA, Zawislak E, Nawrocki J. Choroidal thickness measured with swept source optical coherence tomography before and after vitrectomy with internal limiting membrane peeling for idiopathic epiretinal membranes. Retina. 2015;35(3):487–91. https://doi.org/10.1097/IAE.0000000000000350.

    Article  PubMed  Google Scholar 

  35. Hayashi Y, Mitamura Y, Egawa M, Semba K, Nagasawa T. Swept-source optical coherence tomographic findings of choroidal osteoma. Case Rep Ophthalmol. 2014;5(2):195–202. https://doi.org/10.1159/000365184.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lane M, Moult EM, Novais EA, Louzada RN, Cole ED, Lee B, et al. Visualizing the choriocapillaris under drusen: comparing 1050-nm swept-source versus 840-nm spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):Oct585–590.

  37. Filloy A, Caminal JM, Arias L, Jordan S, Catala J. Swept source optical coherence tomography imaging of a series of choroidal tumours. Can J Ophthalmol. 2015;50(3):242–8. https://doi.org/10.1016/j.jcjo.2015.02.005.

    Article  PubMed  Google Scholar 

  38. Spaide RF, Akiba M, Ohno-Matsui K. Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography. Retina. 2012;32(6):1037–44. https://doi.org/10.1097/IAE.0b013e318242b9c0.

    Article  PubMed  Google Scholar 

  39. Ferrara D, Mohler KJ, Waheed N, Adhi M, Liu JJ, Grulkowski I, et al. En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmol. 2014;121(3):719–26. https://doi.org/10.1016/j.ophtha.2013.10.014.

  40. Dansingani KK, Balaratnasingam C, Naysan J, Freund KB. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina. 2016;36(3):499–516. https://doi.org/10.1097/IAE.0000000000000742.

    Article  PubMed  Google Scholar 

  41. Alasil T, Ferrara D, Adhi M, Brewer E, Kraus MF, Baumal CR, et al. En face imaging of the choroid in polypoidal choroidal vasculopathy using swept-source optical coherence tomography. Am J Ophthalmol. 2015;159(4):634–43. https://doi.org/10.1016/j.ajo.2014.12.012.

  42. Ohno-Matsui K, Akiba M, Ishibashi T, Moriyama M. Observations of vascular structures within and posterior to sclera in eyes with pathologic myopia by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(11):7290–8. https://doi.org/10.1167/iovs.12-10371.

    Article  PubMed  Google Scholar 

  43. Lim LS, Cheung G, Lee SY. Comparison of spectral domain and swept-source optical coherence tomography in pathological myopia. Eye (London, England). 2014;28(4):488–91. https://doi.org/10.1038/eye.2013.308.

    Article  CAS  Google Scholar 

  44. Ellabban AA, Tsujikawa A, Matsumoto A, Yamashiro K, Oishi A, Ooto S, et al. Three-dimensional tomographic features of dome-shaped macula by swept-source optical coherence tomography. Am J Ophthalmol. 2013;155(2):320–8.e2. https://doi.org/10.1016/j.ajo.2012.08.007.

  45. Ohsugi H, Ikuno Y, Oshima K, Yamauchi T, Tabuchi H. Morphologic characteristics of macular complications of a dome-shaped macula determined by swept-source optical coherence tomography. Am J Ophthalmol. 2014;158(1):162–70.e1. https://doi.org/10.1016/j.ajo.2014.02.054.

    Article  PubMed  Google Scholar 

  46. Shinohara K, Moriyama M, Shimada N, Yoshida T, Ohno-Matsui K. Characteristics of peripapillary staphylomas associated with high myopia determined by swept-source optical coherence tomography. Am J Ophthalmol. 169:138–44.

  47. Greven MA, Elkin Z, Nelson RW, Leng T. En face imaging of epiretinal membranes and the retinal nerve fiber layer using swept-source optical coherence tomography. Ophthalmic Surg Lasers Imaging Retina. 2016;47(8):730–4. https://doi.org/10.3928/23258160-20160808-06.

    Article  PubMed  Google Scholar 

  48. Kikushima W, Imai A, Toriyama Y, Hirano T, Murata T, Ishibashi T. Dynamics of macular hole closure in gas-filled eyes within 24 h of surgery observed with swept source optical coherence tomography. Ophthalmic Res. 2015;53(1):48–54. https://doi.org/10.1159/000368437.

    Article  PubMed  Google Scholar 

  49. Spaide RF. Visualization of the posterior vitreous with dynamic focusing and windowed averaging swept source optical coherence tomography. Am J Ophthalmol. 2014;158(6):1267–74. https://doi.org/10.1016/j.ajo.2014.08.035.

    Article  PubMed  Google Scholar 

  50. Liu JJ, Witkin AJ, Adhi M, Grulkowski I, Kraus MF, Dhalla A-H, et al. Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography. PLoS One. 2014;9(7):e102950. https://doi.org/10.1371/journal.pone.0102950.

  51. Itakura H, Kishi S, Li D, Akiyama H. Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(5):3102–7. https://doi.org/10.1167/iovs.13-11769.

    Article  PubMed  Google Scholar 

  52. Li D, Kishi S, Itakura H, Ikeda F, Akiyama H. Posterior precortical vitreous pockets and connecting channels in children on swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(4):2412–6. https://doi.org/10.1167/iovs.14-13967.

    Article  PubMed  Google Scholar 

  53. Pang CE, Schaal KB, Engelbert M. Association of prevascular vitreous fissures and cisterns with vitreous degeneration as assessed by swept source optical coherence tomography. Retina. 2015;35(9):1875–82. https://doi.org/10.1097/IAE.0000000000000540.

    Article  PubMed  Google Scholar 

  54. Ohno-Matsui K, Hirakata A, Inoue M, Akiba M, Ishibashi T. Evaluation of congenital optic disc pits and optic disc colobomas by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(12):7769–78. https://doi.org/10.1167/iovs.13-12901.

    Article  PubMed  Google Scholar 

  55. Shinohara K, Moriyama M, Shimada N, Nagaoka N, Ishibashi T, Tokoro T, et al. Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging. Eye (London, England). 2013;27(11):1233–41; quiz 42. https://doi.org/10.1038/eye.2013.202.

  56. Silverman AL, Tatham AJ, Medeiros FA, Weinreb RN. Assessment of optic nerve head drusen using enhanced depth imaging and swept source optical coherence tomography. J Neuroophthalmol. 2014;34(2):198–205. https://doi.org/10.1097/WNO.0000000000000115.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee KM, Kim T-W, Weinreb RN, Lee EJ, Girard MJA, Mari JM. Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects. PLoS One. 2014;9(12):e114935. https://doi.org/10.1371/journal.pone.0114935.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hood DC, Fortune B, Mavrommatis MA, Reynaud J, Ramachandran R, Ritch R, et al. Details of glaucomatous damage are better seen on OCT En Face images than on OCT retinal nerve fiber layer thickness maps. Invest Ophthalmol Vis Sci. 2015;56(11):6208–16. https://doi.org/10.1167/iovs.15-17259.

  59. Yang Z, Tatham AJ, Zangwill LM, Weinreb RN, Zhang C, Medeiros FA. Diagnostic ability of retinal nerve fiber layer imaging by swept source optical coherence tomography in glaucoma. Am J Ophthalmol. 2015;159(1):193–201. https://doi.org/10.1016/j.ajo.2014.10.019.

    Article  PubMed  Google Scholar 

  60. Omodaka K, Takahashi S, Matsumoto A, Maekawa S, Kikawa T, Himori N, et al. Clinical factors associated with lamina cribrosa thickness in patients with glaucoma, as measured with swept source optical coherence tomography. PLoS One. 2016;11(4):e0153707. https://doi.org/10.1371/journal.pone.0153707.

  61. Omodaka K, Horii T, Takahashi S, Kikawa T, Matsumoto A, Shiga Y, et al. 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS One. 2015;10(4):e0122347. https://doi.org/10.1371/journal.pone.0122347.

  62. Song YJ, Kim YK, Jeoung JW, Park KH. Assessment of open-angle glaucoma peripapillary and macular choroidal thickness using swept-source optical coherence tomography (SS-OCT). PLoS One. 2016;11(6):e0157333. https://doi.org/10.1371/journal.pone.0157333.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mak H, Xu G, Leung CK. Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. Ophthalmol. 2013;120(12):2517–24. https://doi.org/10.1016/j.ophtha.2013.05.009.

    Article  Google Scholar 

  64. Poddar R, Cortes DE, Werner JS, Mannis MJ, Zawadzki RJ. Three-dimensional anterior segment imaging in patients with type 1 Boston keratoprosthesis with switchable full depth range swept source optical coherence tomography. J Biomed Opt. 2013;18(8):86002. https://doi.org/10.1117/1.JBO.18.8.086002.

    Article  PubMed  Google Scholar 

  65. Told R, Ginner L, Hecht A, Sacu S, Leitgeb R, Pollreisz A, et al. Comparative study between a spectral domain and a high-speed single-beam swept source OCTA system for identifying choroidal neovascularization in AMD. Sci Reports. 2016;6(1):38132. https://doi.org/10.1038/srep38132.

  66. Roisman L, Zhang Q, Wang RK, Gregori G, Zhang A, Chen C-L, et al. Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration. Ophthalmol. 2016;123(6):1309–19. https://doi.org/10.1016/j.ophtha.2016.01.044.

  67. • Choi W, Moult EM, Waheed NK, Adhi M, Lee B, Lu CD, et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmol 2015;122(12):2532–2544 Using OCTA, this study showed that choriocapillaris flow impairment extends beyond the margins of GA in patients with non-exudative AMD

  68. Ploner SB, Moult EM, Waheed NK, Husvogt L, Schottenhamml JJ, Lee B, et al., editors. Toward quantitative OCT angiography: visualizing flow impairment using variable interscan time analysis (VISTA). ARVO 2016; Seatle, WA, USA.

  69. Moult EM, Waheed NK, Novais EA, Choi W, Lee B, Ploner SB, et al. Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy. Retina. 2016;36(Suppl 1):S2–s11. https://doi.org/10.1097/IAE.0000000000001287.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre J. Witkin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Retina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasin Alibhai, A., Or, C. & Witkin, A.J. Swept Source Optical Coherence Tomography: a Review. Curr Ophthalmol Rep 6, 7–16 (2018). https://doi.org/10.1007/s40135-018-0158-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-018-0158-3

Keywords

Navigation