Skip to main content

Advertisement

Log in

Dynamic Roles of the Corneal Epithelium in Refractive Surgery

  • Refractive Surgery: From Laser to Intraocular Lenses (C Starr, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to review the role of the corneal epithelium in refractive surgery, with a focus on corneal epithelial thickness changes and corneal wound healing.

Recent Findings

Corneal epithelial thickness changes according to the type of ablation performed, with most studies reporting increased paracentral thickening after myopic corrections and central thinning and paracentral thickening after hyperopic corrections. In addition, there are complex interactions between the corneal epithelium and the stroma that occur as part of the wound healing response after refractive surgery. Both the corneal epithelial thickness and the corneal response to injury can greatly influence the post-operative course.

Summary

The corneal epithelium is a dynamic entity in refractive surgery that contributes to refractive outcomes and complications. Further investigation of corneal epithelial cell biology, particularly with respect to determinants of epithelial thickness and mechanisms of wound healing, may allow surgeons to better control the corneal response to refractive surgery with improved outcomes and fewer complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Solomon KD, et al. LASIK world literature review: quality of life and patient satisfaction. Ophthalmology. 2009;116:691–701. doi:10.1016/j.ophtha.2008.12.037.

    Article  PubMed  Google Scholar 

  2. Reinstein DZ, Archer TJ, Gobbe M. The history of LASIK. J Refract Surg (Thorofare, N.J.: 1995). 2012;28:291–8. doi:10.3928/1081597x-20120229-01.

    Article  Google Scholar 

  3. • Patel S, Marshall J, Fitzke FW 3rd. Refractive index of the human corneal epithelium and stroma. J Refract Surg (Thorofare, N.J.: 1995). 1995;11:100–5. Specifically defines the refractive index of corneal sub-structures

    CAS  Google Scholar 

  4. • Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg (Thorofare, N.J.: 1995). 2008;24:571–81. Defines the epithelial thickness profile of the normal corneal epithelium

    Google Scholar 

  5. Reinstein DZ, Srivannaboon S, Holland SP. Epithelial and stromal changes induced by intacs examined by three-dimensional very high-frequency digital ultrasound. J Refract Surg (Thorofare, N.J.: 1995). 2001;17:310–8.

    CAS  Google Scholar 

  6. Reinstein DZ, Gobbe M, Archer TJ, Couch D, Bloom B. Epithelial, stromal, and corneal pachymetry changes during orthokeratology. Optom Vis Sci: Off publ Am Acad Optom. 2009;86:E1006–14. doi:10.1097/OPX.0b013e3181b18219.

    Article  Google Scholar 

  7. • Dierick HG, Missotten L. Is the corneal contour influenced by a tension in the superficial epithelial cells? A new hypothesis. Refract Corneal Surg. 1992;8:54–9. discussion 60. The authors propose the surface-tension theory for corneal epithelial thickness

    CAS  PubMed  Google Scholar 

  8. Hamberg-Nystrom H, et al. A comparative study of epithelial hyperplasia after PRK: summit versus VISX in the same patient. Acta Ophthalmol Scand. 1996;74:228–31.

    Article  CAS  PubMed  Google Scholar 

  9. Erie JC, et al. Effect of myopic laser in situ keratomileusis on epithelial and stromal thickness: a confocal microscopy study. Ophthalmology. 2002;109:1447–52.

    Article  PubMed  Google Scholar 

  10. Erie JC. Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study. Trans Am Ophthalmol Soc. 2003;101:293–333.

    PubMed  PubMed Central  Google Scholar 

  11. Anderson RA. Actin filaments in normal and migrating corneal epithelial cells. Invest Ophthalmol Vis Sci. 1977;16:161–6.

    CAS  PubMed  Google Scholar 

  12. Ridley AJ, et al. Cell migration: integrating signals from front to back. Science (New York, NY). 2003;302:1704–9. doi:10.1126/science.1092053.

    Article  CAS  Google Scholar 

  13. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989;57:201–9.

    Article  CAS  PubMed  Google Scholar 

  14. Dua HS, Gomes JA, Singh A. Corneal epithelial wound healing. Br J Ophthalmol. 1994;78:401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jester JV, Huang J, Petroll WM, Cavanagh HD. TGFbeta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGFbeta, PDGF and integrin signaling. Exp Eye Res. 2002;75:645–57.

    Article  CAS  PubMed  Google Scholar 

  16. Wilson SE, et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res. 1996;62:325–7. doi:10.1006/exer.1996.0038.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson SE, Chen L, Mohan RR, Liang Q, Liu J. Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding. Exp Eye Res. 1999;68:377–97. doi:10.1006/exer.1998.0603.

    Article  CAS  PubMed  Google Scholar 

  18. Mohan RR, et al. Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Exp Eye Res. 2003;76:71–87.

    Article  CAS  PubMed  Google Scholar 

  19. Zieske JD, Guimaraes SR, Hutcheon AE. Kinetics of keratocyte proliferation in response to epithelial debridement. Exp Eye Res. 2001;72:33–9. doi:10.1006/exer.2000.0926.

    Article  CAS  PubMed  Google Scholar 

  20. • Kaur H, Chaurasia SS, Agrawal V, Suto C, Wilson SE. Corneal myofibroblast viability: opposing effects of IL-1 and TGF beta1. Exp Eye Res. 2009;89:152–8. doi:10.1016/j.exer.2009.03.001. Corneal haze is determined in part by a balance of IL-1 and TGF beta

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. • Torricelli AA, Singh V, Agrawal V, Santhiago MR, Wilson SE. Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze. Invest Ophthalmol Vis Sci. 2013;54:4026–33. doi:10.1167/iovs.13-12106. Describes the key role of the corneal epithelial basement membrane in corneal wound healing

    Article  PubMed  PubMed Central  Google Scholar 

  22. Torricelli AA, et al. Epithelial basement membrane proteins perlecan and nidogen-2 are up-regulated in stromal cells after epithelial injury in human corneas. Exp Eye Res. 2015;134:33–8. doi:10.1016/j.exer.2015.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santhanam A, Torricelli AA, Wu J, Marino GK, Wilson SE. Differential expression of epithelial basement membrane components nidogens and perlecan in corneal stromal cells in vitro. Mol Vis. 2015;21:1318–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Erie JC, McLaren JW, Hodge DO, Bourne WM. Long-term corneal keratoctye deficits after photorefractive keratectomy and laser in situ keratomileusis. Trans Am Ophthalmol Soc. 2005;103:56–66; discussion 67-58.

    PubMed  PubMed Central  Google Scholar 

  25. Erie JC, Nau CB, McLaren JW, Hodge DO, Bourne WM. Long-term keratocyte deficits in the corneal stroma after LASIK. Ophthalmology. 2004;111:1356–61. doi:10.1016/j.ophtha.2003.10.027.

    Article  PubMed  Google Scholar 

  26. Erie JC, Patel SV, McLaren JW, Hodge DO, Bourne WM. Keratocyte density in the human cornea after photorefractive keratectomy. Arch Ophthalmol (Chicago, Ill : 1960). 2003;121:770–6. doi:10.1001/archopht.121.6.770.

    Article  Google Scholar 

  27. Miyamoto T, et al. Wound healing in rabbit corneas after photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg. 2003;29:153–8.

    Article  PubMed  Google Scholar 

  28. Gauthier CA, et al. Epithelial alterations following photorefractive keratectomy for myopia. J Refract Surg (Thorofare, N.J.: 1995). 1995;11:113–8.

    CAS  Google Scholar 

  29. Barker NH, Couper TA, Taylor HR. Changes in corneal topography after laser in situ keratomileusis for myopia. J Refract Surg (Thorofare, N.J.: 1995). 1999;15:46–52.

    CAS  Google Scholar 

  30. Lohmann CP, Guell JL. Regression after LASIK for the treatment of myopia: the role of the corneal epithelium. Semin Ophthalmol. 1998;13:79–82.

    Article  CAS  PubMed  Google Scholar 

  31. Reinstein DZ, Archer TJ, Gobbe M. Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg (Thorofare, N.J.: 1995). 2012;28:195–201. doi:10.3928/1081597x-20120127-02.

    Article  Google Scholar 

  32. Tang M, Li Y, Huang D. Corneal epithelial remodeling after LASIK measured by Fourier-domain optical coherence tomography. J Ophthalmol. 2015;2015:860313. doi:10.1155/2015/860313.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kanellopoulos AJ, Asimellis G. Longitudinal postoperative lasik epithelial thickness profile changes in correlation with degree of myopia correction. J Refract Surg (Thorofare, N.J.: 1995). 2014;30:166–71. doi:10.3928/1081597x-20140219-01.

    Google Scholar 

  34. Chen X, et al. Postoperative changes in corneal epithelial and stromal thickness profiles after photorefractive keratectomy in treatment of myopia. J Refract Surg (Thorofare, N.J.: 1995). 2015;31:446–53. doi:10.3928/1081597x-20150623-02.

    Article  Google Scholar 

  35. Hou J, Wang Y, Lei Y, Zheng X, Zhang Y. Corneal epithelial remodeling and its effect on corneal asphericity after transepithelial photorefractive keratectomy for myopia. J Ophthalmol. 2016;2016:8582362. doi:10.1155/2016/8582362.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dierick HG, Van Mellaert CE, Missotten L. Histology of rabbit corneas after 10-diopter photorefractive keratectomy for hyperopia. J Refract Surg (Thorofare, N.J.: 1995). 1999;15:459–68.

    CAS  Google Scholar 

  37. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness after hyperopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg (Thorofare, N.J.: 1995). 2010;26:555–64. doi:10.3928/1081597x-20091105-02.

    Article  Google Scholar 

  38. Maloney RK. Is corneal contour influenced by tension in the superficial epithelial cells? Refract Corneal Surg. 1993;9:147.

    CAS  PubMed  Google Scholar 

  39. • Kanellopoulos AJ, Aslanides IM, Asimellis G. Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL; is overall epithelial thickness a very early ectasia prognostic factor? Clin Ophthalmol (Auckland, NZ). 2012;6:789–800. doi:10.2147/opth.s31524. The authors describe the biomechanical theory of corneal epithelial thickness change

    Article  CAS  Google Scholar 

  40. Santhiago MR, Smajda D, Wilson SE, Randleman JB. Relative contribution of flap thickness and ablation depth to the percentage of tissue altered in ectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2015;41:2493–500. doi:10.1016/j.jcrs.2015.05.023.

    Article  PubMed  Google Scholar 

  41. Santhiago MR, et al. Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol. 2014;158:87–95.e81. doi:10.1016/j.ajo.2014.04.002.

    Article  PubMed  Google Scholar 

  42. • Reinstein DZ, Archer TJ, Gobbe M. Rate of change of curvature of the corneal stromal surface drives epithelial compensatory changes and remodeling. J Refract Surg (Thorofare, N.J.: 1995). 2014;30:799–802. doi:10.3928/1081597x-20141113-02. The authors describe the compensatory theory of epithelial thickness change

    Google Scholar 

  43. Patel SV, Erie JC, McLaren JW, Bourne WM. Confocal microscopy changes in epithelial and stromal thickness up to 7 years after LASIK and photorefractive keratectomy for myopia. J Refract Surg (Thorofare, NJ: 1995). 2007;23:385–92.

    Google Scholar 

  44. Ivarsen A, Fledelius W, Hjortdal JO. Three-year changes in epithelial and stromal thickness after PRK or LASIK for high myopia. Invest Ophthalmol Vis Sci. 2009;50:2061–6. doi:10.1167/iovs.08-2853.

    Article  PubMed  Google Scholar 

  45. Reinstein DZ, et al. Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg (Thorofare, N.J.: 1995). 2009;25:444–50.

    Article  Google Scholar 

  46. Spadea L, Fasciani R, Necozione S, Balestrazzi E. Role of the corneal epithelium in refractive changes following laser in situ keratomileusis for high myopia. J Refract Surg (Thorofare, N.J.: 1995). 2000;16:133–9.

    CAS  Google Scholar 

  47. Gauthier CA, et al. Role of epithelial hyperplasia in regression following photorefractive keratectomy. Br J Ophthalmol. 1996;80:545–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gauthier CA, et al. Factors affecting epithelial hyperplasia after photorefractive keratectomy. J Cataract Refract Surg. 1997;23:1042–50.

    Article  CAS  PubMed  Google Scholar 

  49. Moller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV. Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study. Ophthalmology. 2000;107:1235–45.

    Article  CAS  PubMed  Google Scholar 

  50. • Reinstein DZ, Gobbe M, Archer TJ, Carp GI. Mechanism for a rare, idiosyncratic complication following hyperopic LASIK: diurnal shift in refractive error due to epithelial thickness profile changes. J Refract Surg (Thorofare, N.J.: 1995). 2016;32:364–71. doi:10.3928/1081597x-20160428-05. Case series describing epithelial thickness plasticity correlating with refractive changes

    Article  Google Scholar 

  51. Vinciguerra P, Azzolini M, Airaghi P, Radice P, De Molfetta V. Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes. J Refract Surg (Thorofare, N.J.: 1995). 1998;14:S199–203.

    CAS  Google Scholar 

  52. Serrao S, Lombardo M, Mondini F. Photorefractive keratectomy with and without smoothing: a bilateral study. J Refract Surg (Thorofare, N.J.: 1995). 2003;19:58–64.

    Google Scholar 

  53. Netto MV, et al. Stromal haze, myofibroblasts, and surface irregularity after PRK. Exp Eye Res. 2006;82:788–97. doi:10.1016/j.exer.2005.09.021.

    Article  CAS  PubMed  Google Scholar 

  54. Corbett MC, et al. An in vivo investigation of the structures responsible for corneal haze after photorefractive keratectomy and their effect on visual function. Ophthalmology. 1996;103:1366–80.

    Article  CAS  PubMed  Google Scholar 

  55. Jester JV, et al. The cellular basis of corneal transparency: evidence for ‘corneal crystallins’. J Cell Sci. 1999;112(Pt 5):613–22.

    CAS  PubMed  Google Scholar 

  56. Weber BA, Fagerholm P, Johansson B. Colocalization of hyaluronan and water in rabbit corneas after photorefractive keratectomy by specific staining for hyaluronan and by quantitative microradiography. Cornea. 1997;16:560–3.

    Article  CAS  PubMed  Google Scholar 

  57. Barbosa FL, et al. Stromal interleukin-1 expression in the cornea after haze-associated injury. Exp Eye Res. 2010;91:456–61. doi:10.1016/j.exer.2010.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Singh V, Barbosa FL, Torricelli AA, Santhiago MR, Wilson SE. Transforming growth factor beta and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts in vitro. Exp Eye Res. 2014;120:152–60. doi:10.1016/j.exer.2014.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang MY, Maloney RK. Epithelial ingrowth after laser in situ keratomileusis. Am J Ophthalmol. 2000;129:746–51.

    Article  CAS  PubMed  Google Scholar 

  60. Randleman JB, Shah RD. LASIK interface complications: etiology, management, and outcomes. J Refract Surg (Thorofare, NJ : 1995). 2012;28:575–86. doi:10.3928/1081597x-20120722-01.

    Article  Google Scholar 

  61. Jabbur NS, Chicani CF, Kuo IC, O'Brien TP. Risk factors in interface epithelialization after laser in situ keratomileusis. J Refract Surg (Thorofare, N.J.: 1995). 2004;20:343–8.

    Google Scholar 

  62. Wilson SE, et al. Effect of ectopic epithelial tissue within the stroma on keratocyte apoptosis, mitosis, and myofibroblast transformation. Exp Eye Res. 2003;76:193–201.

    Article  CAS  PubMed  Google Scholar 

  63. Haw WW, Manche EE. Late onset diffuse lamellar keratitis associated with an epithelial defect in six eyes. J Refract Surg (Thorofare, N.J.: 1995). 2000;16:744–8.

    CAS  Google Scholar 

  64. Shah MN, Misra M, Wihelmus KR, Koch DD. Diffuse lamellar keratitis associated with epithelial defects after laser in situ keratomileusis. J Cataract Refract Surg. 2000;26:1312–8.

    Article  CAS  PubMed  Google Scholar 

  65. Wilson SE, Ambrosio R Jr. Sporadic diffuse lamellar keratitis (DLK) after LASIK. Cornea. 2002;21:560–3.

    Article  PubMed  Google Scholar 

  66. Reinstein DZ, Archer TJ, Gobbe M. Refractive and topographic errors in topography-guided ablation produced by epithelial compensation predicted by 3D Artemis VHF digital ultrasound stromal and epithelial thickness mapping. J Refract Surg (Thorofare, N.J.: 1995). 2012;28:657–63. doi:10.3928/1081597x-20120815-02.

    Article  Google Scholar 

  67. Reinstein DZ, Gobbe M, Archer TJ, Silverman RH, Coleman DJ. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound. J Refract Surg (Thorofare, NJ: 1995). 2010;26:259–71. doi:10.3928/1081597x-20100218-01.

    Article  Google Scholar 

  68. • Silverman RH, et al. Combined tomography and epithelial thickness mapping for diagnosis of keratoconus. Eur J Ophthalmol. 2017;27:129–34. doi:10.5301/ejo.5000850. Epithelial thickness profiles may have a role in the diagnosis of keratoconus

    Article  PubMed  Google Scholar 

  69. Reinstein DZ, Gobbe M, Archer TJ, Couch D. Epithelial thickness profile as a method to evaluate the effectiveness of collagen cross-linking treatment after corneal ectasia. J Refract Surg (Thorofare, N.J.: 1995). 2011;27:356–63. doi:10.3928/1081597x-20100930-01.

    Article  Google Scholar 

  70. Kanellopoulos AJ, Asimellis G. In vivo 3-dimensional corneal epithelial thickness mapping as an indicator of dry eye: preliminary clinical assessment. Am J Ophthalmol. 2014;157:63–68.e62. doi:10.1016/j.ajo.2013.08.025.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Starr.

Ethics declarations

Conflict of Interest

Thomas H. Dohlman, Ashley R. Brissette, and Edward C. Lai declare no conflict of interest.

Christopher E. Starr reports being paid for work as a consultant for Alcon, Allergan, B&L, Sun Pharma, TearLab, and Shire (none relevant to this work) and holds stock in TearLab.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Financial Support

Supported in part by an unrestricted grant to the Weill Cornell Department of Ophthalmology from the Research to Prevent Blindness.

Additional information

This article is part of the Topical Collection on Refractive Surgery: From Laser to Intraocular Lenses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dohlman, T.H., Brissette, A.R., Lai, E.C. et al. Dynamic Roles of the Corneal Epithelium in Refractive Surgery. Curr Ophthalmol Rep 5, 239–248 (2017). https://doi.org/10.1007/s40135-017-0149-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-017-0149-9

Keywords

Navigation