Skip to main content

Advertisement

Log in

Infections in Ocular Prosthesis

  • Ocular Prosthesis (J. De la Cruz, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There has been an exponential expansion of the types and application of ocular prostheses in the last 10 years. Patients with ocular prostheses in all forms are at increased risk for microbial infections. The true incidence and/or prevalence of ocular prosthesis-associated infections are unknown.

Recent Findings

Millions of people worldwide are candidates in need of ocular prostheses for cosmesis, vision rehabilitation, and restoration. The presence of an ocular prosthesis carries a lifetime risk of infection and leads to ocular surface and microbiome dysbiosis.

Summary

Ophthalmologists should be aware of the inherent risk and diversity of microbial colonization and infections associated with the placement of the expanding list of ocular prostheses. Additional adverse events include ocular surface and ocular microbiome disruption, vision loss, and ocular surface dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ament JD, et al. Global corneal blindness and the Boston keratoprosthesis type I. Am J Ophthalmol. 2010;149(4):537–9.

    Article  PubMed  Google Scholar 

  2. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614–8.

    Article  PubMed  Google Scholar 

  3. Wlodarska M, Finlay BB. Host immune response to antibiotic perturbation of the microbiota. Mucosal Immunol. 2010;3(2):100–3.

    Article  CAS  PubMed  Google Scholar 

  4. Mircheff AK, et al. Mucosal immunity and self-tolerance in the ocular surface system. Ocul Surf. 2005;3(4):182–92.

    Article  PubMed  Google Scholar 

  5. Patil SB, et al. Ocular prosthesis: a brief review and fabrication of an ocular prosthesis for a geriatric patient. Gerodontology. 2008;25(1):57–62.

    Article  PubMed  Google Scholar 

  6. de Paiva CS, et al. Altered mucosal microbiome diversity and disease severity in sjogren syndrome. Sci Rep. 2016;6:23561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Miller D, Iovieno A. The role of microbial flora on the ocular surface. Curr Opin Allergy Clin Immunol. 2009;9(5):466–70.

    Article  PubMed  Google Scholar 

  8. Stern ME, et al. Autoimmunity at the ocular surface: pathogenesis and regulation. Mucosal Immunol. 2010;3(5):425–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Barabino S, et al., Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease. Prog Retin Eye Res, 2012. 31(3): 271–85. This paper offers an exceptional review of the role the ocular surface dysbiosis play in the develop of ocular surface eye diseases with emphasis on dry eye syndrome.

  10. Bolanos-Jimenez R, et al. Ocular surface as barrier of innate immunity. Open Ophthalmol J. 2015;9:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ueta M, Kinoshita S. Innate immunity of the ocular surface. Brain Res Bull. 2010;81(2–3):219–28.

    Article  CAS  PubMed  Google Scholar 

  12. Aoki R, et al. Identification of causative pathogens in eyes with bacterial conjunctivitis by bacterial cell count and microbiota analysis. Ophthalmology. 2013;120(4):668–76.

    Article  PubMed  Google Scholar 

  13. Zegans ME, Van Gelder RN. Considerations in understanding the ocular surface microbiome. Am J Ophthalmol. 2014;158(3):420–2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pfefferle PI, Renz H. The mucosal microbiome in shaping health and disease. F1000Prime Rep. 2014;6:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. • Shin H, et al., Changes in the Eye Microbiota Associated with Contact Lens Wearing. MBio, 2016. 7(2). This is an Interesting paper highlighting changes in the ocular microbiome with the presence of contact lens. This paper confirms that the presence of an ocular prosthesis can disrupt the normal ocular microbiome which can lead to compromised ocular surface and increase risk of infection.

  16. Fajardo A, Martinez JL. Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol. 2008;11(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  17. Ege MJ, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364(8):701–9.

    Article  CAS  PubMed  Google Scholar 

  18. Behlau I, Gilmore MS. Microbial biofilms in ophthalmology and infectious disease. Arch Ophthalmol. 2008;126(11):1572–81.

    Article  CAS  PubMed  Google Scholar 

  19. Bispo PJ, Haas W, Gilmore MS. Biofilms in infections of the eye. Pathogens. 2015;4(1):111–36.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jassim SH, et al. Bacteria colonizing the ocular surface in eyes with boston type 1 Keratoprosthesis: analysis of biofilm-forming capability and vancomycin tolerance. Invest Ophthalmol Vis Sci. 2015;56(8):4689–96.

    Article  CAS  PubMed  Google Scholar 

  21. Paranhos RM, et al. Evaluation of ocular prosthesis biofilm and anophthalmic cavity contamination after use of three cleansing solutions. J Appl Oral Sci. 2007;15(1):33–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun MT, Pirbhai A, Selva D. Bacterial biofilms associated with ocular prostheses. Clin Experiment Ophthalmol. 2015;43(6):602–3.

    Article  PubMed  Google Scholar 

  23. Baino F, et al. Novel antibacterial ocular prostheses: proof of concept and physico-chemical characterization. Mater Sci Eng C. 2016;60:467–74.

    Article  CAS  Google Scholar 

  24. Baino F, et al. Biomaterials for orbital implants and ocular prostheses: overview and future prospects. Acta Biomater. 2014;10(3):1064–87.

    Article  CAS  PubMed  Google Scholar 

  25. Dart JK, et al. Risk factors for microbial keratitis with contemporary contact lenses: a case-control study. Ophthalmology. 2008;115(10):1647–54 1654 e1-3.

    Article  CAS  PubMed  Google Scholar 

  26. Saini A, et al. Episodes of microbial keratitis with therapeutic silicone hydrogel bandage soft contact lenses. Eye Contact Lens. 2013;39(5):324–8.

    Article  PubMed  Google Scholar 

  27. Szczotka-Flynn LB, Pearlman E, Ghannoum M. Microbial contamination of contact lenses, lens care solutions, and their accessories: a literature review. Eye Contact Lens. 2010;36(2):116–29.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thakur DV, Gaikwad UN. Microbial contamination of soft contact lenses & accessories in asymptomatic contact lens users. Indian J Med Res. 2014;140(2):307–9.

    PubMed  PubMed Central  Google Scholar 

  29. Yung MS, et al. Microbial contamination of contact lenses and lens care accessories of soft contact lens wearers (university students) in Hong Kong. Ophthalmic Physiol Opt. 2007;27(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  30. Dong Q, et al. Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci. 2011;52(8):5408–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Willcox MD. Characterization of the normal microbiota of the ocular surface. Exp Eye Res. 2013;117:99–105.

    Article  CAS  PubMed  Google Scholar 

  32. Pine KR, Sloan BH, Jacobs RJ. Clinical ocular prosthetics. Switzerland: Springer; 2015. p. 319.

    Book  Google Scholar 

  33. Gunaseelaraj R, et al. Custom-made ocular prosthesis. J Pharm Bioallied Sci. 2012;4(Suppl 2):S177–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raizada K, Rani D. Ocular prosthesis. Cont Lens Anterior Eye. 2007;30(3):152–62.

    Article  PubMed  Google Scholar 

  35. Singh M, et al. Management of an anophthalmic patient by the fabrication of custom made ocular prosthesis. Malays J Med Sci. 2015;22(3):75–9.

    PubMed  PubMed Central  Google Scholar 

  36. Pine K, et al. A survey of prosthetic eye wearers to investigate mucoid discharge. Clin Ophthalmol. 2012;6:707–13.

    PubMed  PubMed Central  Google Scholar 

  37. Quaranta-Leoni FM, et al. Management of porous orbital implants requiring explantation: a clinical and histopathological study. Ophthal Plast Reconstr Surg. 2014;30(2):132–6.

    Article  PubMed  Google Scholar 

  38. Pine KR, Sloan BH, Jacobs RJ. A proposed model of the response of the anophthalmic socket to prosthetic eye wear and its application to the management of mucoid discharge. Med Hypotheses. 2013;81(2):300–5.

    Article  PubMed  Google Scholar 

  39. Samimi DB, et al. Microbiologic trends and biofilm growth on explanted periorbital biomaterials: a 30-year review. Ophthal Plast Reconstr Surg. 2013;29(5):376–81.

    Article  PubMed  Google Scholar 

  40. Yang JW, et al. Antibacterial properties of artificial eyes containing nano-sized particle silver. Orbit. 2011;30(2):77–81.

    Article  CAS  PubMed  Google Scholar 

  41. Durand ML, Dohlman CH. Successful prevention of bacterial endophthalmitis in eyes with the Boston keratoprosthesis. Cornea. 2009;28(8):896–901.

    Article  PubMed  Google Scholar 

  42. Kanemoto M, et al. Prosthetic soft contact lenses in Japan. Eye Contact Lens. 2007;33(6 Pt 1):300–3.

    Article  PubMed  Google Scholar 

  43. Yildirim N, Basmak H, Sahin A. Prosthetic contact lenses: adventure or miracle. Eye Contact Lens. 2006;32(2):102–3.

    Article  PubMed  Google Scholar 

  44. Stason WB, et al. Clinical benefits of the Boston ocular surface prosthesis. Am J Ophthalmol. 2010;149(1):54–61.

    Article  PubMed  Google Scholar 

  45. Traish AS, Chodosh J. Expanding application of the Boston type I keratoprosthesis due to advances in design and improved post-operative therapeutic strategies. Semin Ophthalmol. 2010;25(5–6):239–43.

    Article  PubMed  Google Scholar 

  46. Avadhanam VS, Liu CS. A brief review of Boston type-1 and osteo-odonto keratoprostheses. Br J Ophthalmol. 2015;99(7):878–87.

    Article  PubMed  Google Scholar 

  47. Avadhanam VS, Smith HE, Liu C. Keratoprostheses for corneal blindness: a review of contemporary devices. Clin Ophthalmol. 2015;9:697–720.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tan A, et al. Osteo-odonto keratoprosthesis: systematic review of surgical outcomes and complication rates. Ocul Surf. 2012;10(1):15–25.

    Article  PubMed  Google Scholar 

  49. Lam FC, Liu C. The future of keratoprostheses (artificial corneae). Br J Ophthalmol. 2011;95(3):304–5.

    Article  PubMed  Google Scholar 

  50. Thomas M, et al. Contact lens use in patients with Boston keratoprosthesis Type 1: fitting, management, and complications. Eye Contact Lens. 2015;41(6):334–40.

    Article  PubMed  Google Scholar 

  51. Odorcic S, et al. Fungal infections in Boston keratoprosthesis patients: lessons learned and novel developments on the Horizon. Semin Ophthalmol. 2016;31(1–2):71–84.

    Article  PubMed  Google Scholar 

  52. Ayres BD. Characteristics of endophthalmitis in patients with the Boston keratoprosthesis. Cornea. 2012;31(7):846.

    Article  PubMed  Google Scholar 

  53. Behlau I, et al. Infectious endophthalmitis in Boston keratoprosthesis: incidence and prevention. Acta Ophthalmol. 2014;92(7):e546–55.

    Article  CAS  PubMed  Google Scholar 

  54. Nascimento HM, Oliveira LA, Hofling-Lima AL. Infectious keratitis in patients undergoing Boston type 1 keratoprosthesis (Boston KPro) procedure: case series. Arq Bras Oftalmol. 2011;74(2):127–9.

    Article  PubMed  Google Scholar 

  55. Robert MC, et al. Microbial colonization and antibacterial resistance patterns after Boston type 1 keratoprosthesis. Ophthalmology. 2013;120(8):1521–8.

    Article  PubMed  Google Scholar 

  56. Jain V, et al. Fungal keratitis with the type 1 Boston keratoprosthesis: early Indian experience. Cornea. 2012;31(7):841–3.

    Article  PubMed  Google Scholar 

  57. Kim MJ, Yu F, Aldave AJ. Microbial keratitis after Boston type I keratoprosthesis implantation: incidence, organisms, risk factors, and outcomes. Ophthalmology. 2013;120(11):2209–16.

    Article  PubMed  Google Scholar 

  58. Koh S, et al. Development of methicillin-resistant Staphylococcus aureus keratitis in a dry eye patient with a therapeutic contact lens. Eye Contact Lens. 2012;38(3):200–2.

    Article  PubMed  Google Scholar 

  59. Wagoner MD, et al. Microbial keratitis and endophthalmitis after the Boston type 1 keratoprosthesis. Cornea. 2016;35(4):486–93.

    Article  PubMed  Google Scholar 

  60. Chan CC, Holland EJ. Infectious keratitis after Boston type 1 keratoprosthesis implantation. Cornea. 2012;31(10):1128–34.

    Article  PubMed  Google Scholar 

  61. Keating A, Pineda R 2nd. Trichosporon asahii keratitis in a patient with a type I Boston keratoprosthesis and contact lens. Eye Contact Lens. 2012;38(2):130–2.

    Article  PubMed  Google Scholar 

  62. • Lee WB, et al. Boston Keratoprosthesis: Outcomes and Complications: A Report by the American Academy of Ophthalmology. Ophthalmology. 2015. 122(7): 1504–11. This paper provides up to date review on applications, outcomes and complications of the most commonly used ocular prosththesis-Boston Keratoprosthesis type 1. Data supports the use of the device in those with serious ocular surface disease but highlights infections as a major continuing complication.

  63. Chan CC, Holland EJ. Infectious endophthalmitis after Boston type 1 keratoprosthesis implantation. Cornea. 2012;31(4):346–9.

    Article  PubMed  Google Scholar 

  64. Lee JC, et al. Functional and visual improvement with prosthetic replacement of the ocular surface ecosystem scleral lenses for irregular corneas. Cornea. 2013;32(12):1540–3.

    Article  PubMed  Google Scholar 

  65. Chhablani J, et al. Endophthalmitis in Boston keratoprosthesis: case series and review of literature. Int Ophthalmol. 2015;35(5):673–8.

    Article  PubMed  Google Scholar 

  66. Fintelmann RE, et al. Characteristics of endophthalmitis in patients with the Boston keratoprosthesis. Cornea. 2009;28(8):877–8.

    Article  PubMed  Google Scholar 

  67. Robert MC, Moussally K, Harissi-Dagher M. Review of endophthalmitis following Boston keratoprosthesis type 1. Br J Ophthalmol. 2012;96(6):776–80.

    Article  PubMed  Google Scholar 

  68. Sivaraman KR, et al. Scanning electron microscopic analysis of biofilm formation in explanted human Boston type I keratoprostheses. Cornea. 2016;35(1):25–9.

    Article  PubMed  Google Scholar 

  69. Gomaa A, Comyn O, Liu C. Keratoprostheses in clinical practice—a review. Clin Exp Ophthalmol. 2010;38(2):211–24.

    Article  Google Scholar 

  70. Falcinelli G, et al. Modified osteo-odonto-keratoprosthesis for treatment of corneal blindness: long-term anatomical and functional outcomes in 181 cases. Arch Ophthalmol. 2005;123(10):1319–29.

    Article  PubMed  Google Scholar 

  71. Iyer G, et al. Modified osteo-odonto keratoprosthesis–the Indian experience–results of the first 50 cases. Cornea. 2010;29(7):771–6.

    PubMed  Google Scholar 

  72. Liu C, et al. The osteo-odonto-keratoprosthesis (OOKP). Semin Ophthalmol. 2005;20(2):113–28.

    Article  PubMed  Google Scholar 

  73. Sawatari Y, et al. Biointegration of the osteo-odonto lamina in the modified osteo-odonto keratoprosthesis: engineering of tissue to restore lost vision. Int J Oral Maxillofac Implants. 2013;28(5):e304–9.

    Article  PubMed  Google Scholar 

  74. Lim LS, et al. Vitreoretinal complications and vitreoretinal surgery in osteo-odonto-keratoprosthesis surgery. Am J Ophthalmol. 2014;157(2):349–54.

    Article  PubMed  Google Scholar 

  75. Blackmore SJ. The use of contact lenses in the treatment of persistent epithelial defects. Cont Lens Anterior Eye. 2010;33(5):239–44.

    Article  PubMed  Google Scholar 

  76. Harissi-Dagher M, Beyer J, Dohlman CH. The role of soft contact lenses as an adjunct to the Boston keratoprosthesis. Int Ophthalmol Clin. 2008;48(2):43–51.

    Article  PubMed  Google Scholar 

  77. Hondur A, et al. Microbiologic study of soft contact lenses after laser subepithelial keratectomy for myopia. Eye Contact Lens. 2008;34(1):24–7.

    Article  PubMed  Google Scholar 

  78. Pullum K, Buckley R. Therapeutic and ocular surface indications for scleral contact lenses. Ocul Surf. 2007;5(1):40–8.

    Article  PubMed  Google Scholar 

  79. Rosenthal P, Cotter JM, Baum J. Treatment of persistent corneal epithelial defect with extended wear of a fluid-ventilated gas-permeable scleral contact lens. Am J Ophthalmol. 2000;130(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  80. Coral-Ghanem C, Ghanem VC, Ghanem RC. Therapeutic contact lenses and the advantages of high Dk materials. Arq Bras Oftalmol. 2008;71(6 Suppl):19–22.

    Article  PubMed  Google Scholar 

  81. Kammerdiener LL, et al. Protective effect of soft contact lenses after Boston keratoprosthesis. Br J Ophthalmol. 2016;100(4):549–52.

    Article  PubMed  Google Scholar 

  82. Stoyanova EI, et al. Bandage and scleral contact lenses for ocular graft-versus-host disease after allogeneic haematopoietic stem cell transplantation. Acta Ophthalmol. 2015;93(7):e604.

    Article  PubMed  Google Scholar 

  83. Margolis R, Thakrar V, Perez VL. Role of rigid gas-permeable scleral contact lenses in the management of advanced atopic keratoconjunctivitis. Cornea. 2007;26(9):1032–4.

    Article  PubMed  Google Scholar 

  84. Pearson RM. Comments on “Modern scleral contact lenses: a review” [van der Worp, (2014)]. Cont Lens Anterior Eye. 2015;38(1):73–4.

    Article  PubMed  Google Scholar 

  85. Rai R, et al. Contact lens surveillance cultures in Boston type 1 keratoprosthesis patients. Eye Contact Lens. 2013;39(2):175–8.

    Article  PubMed  Google Scholar 

  86. Willcox MD, et al. Contact lens case contamination during daily wear of silicone hydrogels. Optom Vis Sci. 2010;87(7):456–64.

    PubMed  Google Scholar 

  87. Zhao Z, et al. Contact lens deposits, adverse responses, and clinical ocular surface parameters. Optom Vis Sci. 2010;87(9):669–74.

    Article  PubMed  Google Scholar 

  88. Carnt N, et al. Pathogenesis of contact lens-associated microbial keratitis. Optom Vis Sci. 2010. 87(8): 612–3; author reply 613-4.

  89. Glasson MJ, et al. The effect of short term contact lens wear on the tear film and ocular surface characteristics of tolerant and intolerant wearers. Cont Lens Anterior Eye. 2006;29(1):41–7 quiz 49.

    Article  CAS  PubMed  Google Scholar 

  90. Ozkan J, et al. Effect of daily contact lens cleaning on ocular adverse events during extended wear. Optom Vis Sci. 2015;92(2):157–66.

    Article  PubMed  Google Scholar 

  91. Schornack MM. Scleral lenses: a literature review. Eye Contact Lens. 2015;41(1):3–11.

    Article  PubMed  Google Scholar 

  92. Kalwerisky K, et al. Use of the Boston Ocular Surface Prosthesis in the management of severe periorbital thermal injuries: a case series of 10 patients. Ophthalmology. 2012;119(3):516–21.

    Article  PubMed  Google Scholar 

  93. Rathi VM, et al. Fluid filled scleral contact lens in pediatric patients: challenges and outcome. Cont Lens Anterior Eye. 2012;35(4):189–92.

    Article  PubMed  Google Scholar 

  94. van der Worp E, et al. Modern scleral contact lenses: a review. Cont Lens Anterior Eye. 2014;37(4):240–50.

    Article  PubMed  Google Scholar 

  95. Chiu GB, et al. Prosthetic replacement of the ocular surface ecosystem (PROSE) scleral lens for Salzmann’s nodular degeneration. Saudi J Ophthalmol. 2014;28(3):203–6.

    Article  PubMed  PubMed Central  Google Scholar 

  96. DeLoss KS, Fatteh NH, Hood CT. Prosthetic replacement of the ocular surface ecosystem (PROSE) scleral device compared to keratoplasty for the treatment of corneal ectasia. Am J Ophthalmol. 2014;158(5):974–82.

    Article  PubMed  Google Scholar 

  97. Jacobs DS. Update on scleral lenses. Curr Opin Ophthalmol. 2008;19(4):298–301.

    Article  PubMed  Google Scholar 

  98. Rathi VM, et al. Scleral contact lenses in the management of pellucid marginal degeneration. Cont Lens Anterior Eye. 2016;39(3):217–20.

    Article  PubMed  Google Scholar 

  99. Pullum KW, Whiting MA, Buckley RJ. Scleral contact lenses: the expanding role. Cornea. 2005;24(3):269–77.

    Article  PubMed  Google Scholar 

  100. Rathi VM, et al. Fluid-filled scleral contact lenses in vernal keratoconjunctivitis. Eye Contact Lens. 2012;38(3):203–6.

    Article  PubMed  Google Scholar 

  101. Lim P, et al. Treatment of persistent corneal epithelial defect with overnight wear of a prosthetic device for the ocular surface. Am J Ophthalmol. 2013;156(6):1095–101.

    Article  PubMed  Google Scholar 

  102. Agranat JS, Kitos NR, Jacobs DS. Prosthetic replacement of the ocular surface ecosystem: impact at 5 years. Br J Ophthalmol. 2015. doi:10.1136/bjophthalmol-2015-307483.

    PubMed  Google Scholar 

  103. Lee WB, Gotay A. Bilateral Acanthamoeba keratitis in Synergeyes contact lens wear: clinical and confocal microscopy findings. Eye Contact Lens. 2010;36(3):164–9.

    Article  PubMed  Google Scholar 

  104. Fernandes M, Sharma S. Polymicrobial and microsporidial keratitis in a patient using Boston scleral contact lens for Sjogren’s syndrome and ocular cicatricial pemphigoid. Cont Lens Anterior Eye. 2013;36(2):95–7.

    Article  PubMed  Google Scholar 

  105. Farhat B, Sutphin JE. Deep anterior lamellar keratoplasty for acanthamoeba keratitis complicating the use of Boston scleral lens. Eye Contact Lens. 2014;40(1):e5–7.

    Article  PubMed  Google Scholar 

  106. Schornack MM, et al. Jupiter scleral lenses in the management of chronic graft versus host disease. Eye Contact Lens. 2008;34(6):302–5.

    Article  PubMed  Google Scholar 

  107. Gorbet MB, et al. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions. Mol Vis. 2010;16:272–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Imayasu M, Hori Y, Cavanagh HD. Effects of multipurpose contact lens care solutions and their ingredients on membrane-associated mucins of human corneal epithelial cells. Eye Contact Lens. 2010;36(6):361–6.

    Article  PubMed  Google Scholar 

  109. Walker MK, et al. Complications and fitting challenges associated with scleral contact lenses: a review. Cont Lens Anterior Eye. 2016;39(2):88–96.

    Article  PubMed  Google Scholar 

  110. Zimmerman AB, Marks A. Microbial keratitis secondary to unintended poor compliance with scleral gas-permeable contact lenses. Eye Contact Lens. 2014;40(1):e1–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darlene Miller.

Ethics declarations

Disclosure

Darlene Miller declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Ocular Prosthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, D. Infections in Ocular Prosthesis. Curr Ophthalmol Rep 4, 159–171 (2016). https://doi.org/10.1007/s40135-016-0104-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-016-0104-1

Keywords

Navigation