Skip to main content

Advertisement

Log in

Biomaterials: Impact on Keratoprosthesis Implantation

  • Ocular Prosthesis (J. De la Cruz, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The increasing demand for corneal tissue and clinical circumstances of severe corneal scarring and vascularization have stimulated a continued interest in developing an artificial cornea from innovative biomaterials. We review the latest findings on the variety of materials used for artificial corneas and keratoprostheses, focusing most heavily on the Boston keratoprosthesis, the AlphaCor, and the Osteo-odonto Keratoprosthesis.

Recent Findings

Advancement of keratoprosthesis design has largely focused on surface modification of established materials and surveying new materials. Techniques such as modifying the PMMA surface in the Boston keratoprosthesis with PEG and RGD peptide conjugation are targeted towards decreasing the formation of RPM and improving biointegration respectively. Similar efforts have been undertaken to improve biocompatibility for various AlphaCor prototypes with integration of novel procedures such as photolithographic patterning and microcontact printing. New materials, such as titanium, interpenetrating polymer networks, and bioactive glass composites, have also been investigated to improve the functionality of the Boston keratoprosthesis, AlphaCor, and Osteo-odonto Keratoprosthesis.

Summary

Severe corneal injury necessitates the use of keratoprostheses and artificial corneas. These have utilized a variety of materials in their development and construction including biologic, nonbiologic and even electronic solutions. The type of material used is of critical importance to the biocompatibility and long-term success of these corneal implants. However, a keratoprosthesis able to restore vision in the long term remains a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pineda R. Corneal transplantation in the developing world: lessons learned and meeting the challenge. Cornea. 2015;34(Suppl 10):S35–40.

    Article  PubMed  Google Scholar 

  2. Oliva MS, Schottman T, Gulati M. Turning the tide of corneal blindness. Indian J Ophthalmol. 2012;60(5):423–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Park CY, Lee JK, Gore PK, et al. Keratoplasty in the United States: a 10-year review from 2005 through 2014. Ophthalmology. 2015;122(12):2432–42.

    Article  PubMed  Google Scholar 

  4. Thompson RW Jr, Price MO, Bowers PJ, Price FW Jr. Long-term graft survival after penetrating keratoplasty. Ophthalmology. 2003;110(7):1396–402.

    Article  PubMed  Google Scholar 

  5. Borderie VM, Boelle PY, Touzeau O, et al. Predicted long-term outcome of corneal transplantation. Ophthalmology. 2009;116(12):2354–60.

    Article  PubMed  Google Scholar 

  6. Avadhanam VS, Smith HE, Liu C. Keratoprostheses for corneal blindness: a review of contemporary devices. Clin Ophthalmol. 2015;9:697–720.

    Article  PubMed Central  Google Scholar 

  7. Myung D, Duhamel PE, Cochran JR, et al. Development of hydrogel-based keratoprostheses: a materials perspective. Biotechnol Prog. 2008;24(3):735–41.

    Article  CAS  PubMed  Google Scholar 

  8. Ament JD, Stryjewski TP, Ciolino JB, et al. Cost-effectiveness of the Boston keratoprosthesis. Am J Ophthalmol. 2010;149(2):221-8e2.

    Article  Google Scholar 

  9. Carlsson DJ, Li F, Shimmura S, Griffith M. Bioengineered corneas: how close are we? Curr Opin Ophthalmol. 2003;14(4):192–7.

    Article  PubMed  Google Scholar 

  10. Sayegh RR, Ang LP, Foster CS, Dohlman CH. The Boston keratoprosthesis in Stevens–Johnson syndrome. Am J Ophthalmol. 2008;145(3):438–44.

    Article  PubMed  Google Scholar 

  11. Colby KA, Koo EB. Expanding indications for the Boston keratoprosthesis. Curr Opin Ophthalmol. 2011;22(4):267–73.

    Article  PubMed  Google Scholar 

  12. Lee WB, Shtein RM, Kaufman SC, et al. Boston keratoprosthesis: outcomes and complications: a report by the American academy of ophthalmology. Ophthalmology. 2015;122(7):1504–11.

    Article  PubMed  Google Scholar 

  13. Harissi-Dagher M, Khan BF, Schaumberg DA, Dohlman CH. Importance of nutrition to corneal grafts when used as a carrier of the Boston Keratoprosthesis. Cornea. 2007;26(5):564–8.

    PubMed  Google Scholar 

  14. Doane MG, Dohlman CH, Bearse G. Fabrication of a keratoprosthesis. Cornea. 1996;15(2):179–84.

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Jeong KJ, Chiang HH, et al. Hydroxyapatite for keratoprosthesis biointegration. Invest Ophthalmol Vis Sci. 2011;52(10):7392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zarei-Ghanavati S, Betancurt C, Mas AM, et al. Ultra high resolution optical coherence tomography in Boston type I keratoprosthesis. J Ophthalmic Vis Res. 2015;10(1):26–32.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim MK, Park IS, Park HD, et al. Effect of poly(ethylene glycol) graft polymerization of poly(methyl methacrylate) on cell adhesion. In vitro and in vivo study. J Cataract Refract Surg. 2001;27(5):766–74.

    Article  CAS  PubMed  Google Scholar 

  18. Patel S, Thakar RG, Wong J, et al. Control of cell adhesion on poly(methyl methacrylate). Biomaterials. 2006;27(14):2890–7.

    Article  CAS  PubMed  Google Scholar 

  19. Mehta JS, Futter CE, Sandeman SR, et al. Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials. Br J Ophthalmol. 2005;89(10):1356–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Riau AK, Mondal D, Yam GH, et al. Surface Modification of PMMA to Improve Adhesion to Corneal Substitutes in a Synthetic Core-Skirt Keratoprosthesis. ACS Appl Mater Interfaces 2015;7(39):21690–702. This basic science study demonstrates surface modification techniques that could be used to improve the biocompatability of PMMA devices such as the Boston Keratoprosthesis.

  21. Stacy RC, Jakobiec FA, Michaud NA, et al. Characterization of retrokeratoprosthetic membranes in the Boston type 1 keratoprosthesis. Arch Ophthalmol. 2011;129(3):310–6.

    Article  PubMed  Google Scholar 

  22. Chaberska H, Kaczmarek H, Bazylak G. Viability of murine 3T3 fibroblasts on the poly(methyl methacrylate) surface modified by constant UV irradiation. Polim Med. 2007;37(3):13–9.

    CAS  PubMed  Google Scholar 

  23. Long M, Rack HJ. Titanium alloys in total joint replacement–a materials science perspective. Biomaterials. 1998;19(18):1621–39.

    Article  CAS  PubMed  Google Scholar 

  24. •• Todani A, Ciolino JB, Ament JD, et al. Titanium back plate for a PMMA keratoprosthesis: clinical outcomes. Graefes Arch Clin Exp Ophthalmol 2011;249(10):1515–8. This retrospective study demonstrated lower rate of retroprosthetic membrane formation at 6 months with the use of a titanium back plate in the Boston Keratoprosthesis I. It has led to increased use of the titanium back plate.

  25. Ament JD, Spurr-Michaud SJ, Dohlman CH, Gipson IK. The Boston Keratoprosthesis: comparing corneal epithelial cell compatibility with titanium and PMMA. Cornea. 2009;28(7):808–11.

    Article  PubMed Central  Google Scholar 

  26. Linnola RJ, Happonen RP, Andersson OH, et al. Titanium and bioactive glass-ceramic coated titanium as materials for keratoprosthesis. Exp Eye Res. 1996;63(4):471–8.

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Zhou J, Wang XM, et al. Biocompatible study of modified titanium skirt for keratoprosthesis. Zhonghua Yan Ke Za Zhi. 2010;46(9):815–20.

    CAS  PubMed  Google Scholar 

  28. Dong Y, Yang J, Wang L, et al. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating. J Biomater Appl. 2014;28(7):990–7.

    Article  PubMed  Google Scholar 

  29. Paschalis EI, Chodosh J, Spurr-Michaud S, et al. In vitro and in vivo assessment of titanium surface modification for coloring the backplate of the Boston keratoprosthesis. Invest Ophthalmol Vis Sci. 2013;54(6):3863–73.

    Article  CAS  PubMed  Google Scholar 

  30. Zellander A, Gemeinhart R, Djalilian A, et al. Designing a gas foamed scaffold for keratoprosthesis. Mater Sci Eng C Mater Biol Appl. 2013;33(6):3396–403.

    Article  CAS  PubMed  Google Scholar 

  31. Chirila TV, Vijayasekaran S, Horne R, et al. Interpenetrating polymer network (IPN) as a permanent joint between the elements of a new type of artificial cornea. J Biomed Mater Res. 1994;28(6):745–53.

    Article  CAS  PubMed  Google Scholar 

  32. Hicks CR, Crawford GJ, Dart JK, et al. AlphaCor: clinical outcomes. Cornea. 2006;25(9):1034–42.

    Article  PubMed  Google Scholar 

  33. Hicks CR, Crawford GJ. Melting after keratoprosthesis implantation: the effects of medroxyprogesterone. Cornea. 2003;22(6):497–500.

    Article  PubMed  Google Scholar 

  34. Hicks CR, Werner L, Vijayasekaran S, et al. Histology of AlphaCor skirts: evaluation of biointegration. Cornea. 2005;24(8):933–40.

    Article  CAS  PubMed  Google Scholar 

  35. Kanayama S, Garty S, Kim B, Shen TT. Histological study of graft failure in AlphaCor transplantation. Int Ophthalmol. 2011;31(6):501–4.

    Article  PubMed  Google Scholar 

  36. Sandeman SR, Faragher RG, Allen MC, et al. Novel materials to enhance keratoprosthesis integration. Br J Ophthalmol. 2000;84(6):640–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jacob JT, Rochefort JR, Bi J, Gebhardt BM. Corneal epithelial cell growth over tethered-protein/peptide surface-modified hydrogels. J Biomed Mater Res B. 2005;72(1):198–205.

    Article  Google Scholar 

  38. Wallace C, Jacob JT, Stoltz A, et al. Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces. J Biomed Mater Res A. 2005;72(1):19–24.

    Article  PubMed  Google Scholar 

  39. Paterson SM, Shadforth AM, Shaw JA, et al. Improving the cellular invasion into PHEMA sponges by incorporation of the RGD peptide ligand: the use of copolymerization as a means to functionalize PHEMA sponges. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4917–22.

    Article  CAS  PubMed  Google Scholar 

  40. Barnard Z, Keen I, et al. PHEMA hydrogels modified through the grafting of phosphate groups by ATRP support the attachment and growth of human corneal epithelial cells. J Biomater Appl. 2008;23(2):147–68.

    Article  PubMed  Google Scholar 

  41. Yanez-Soto B, Liliensiek SJ, Gasiorowski JZ, et al. The influence of substrate topography on the migration of corneal epithelial wound borders. Biomaterials. 2013;34(37):9244–51.

    Article  CAS  PubMed  Google Scholar 

  42. Kita M, Ogura Y, Honda Y, et al. A polyvinyl alcohol (PVA) hydrogel as a soft contact lens material. Nippon Ganka Gakkai Zasshi. 1990;94(5):480–3.

    CAS  PubMed  Google Scholar 

  43. Fenglan X, Yubao L, Xiaoming Y, et al. Preparation and in vivo investigation of artificial cornea made of nano-hydroxyapatite/poly (vinyl alcohol) hydrogel composite. J Mater Sci Mater Med. 2007;18(4):635–40.

    Article  PubMed  Google Scholar 

  44. Xu F, Li Y, Deng Y, Xiong J. Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe: characterization and evaluation in vitro. J Biomater Sci Polym Ed. 2008;19(4):431–9.

    Article  CAS  PubMed  Google Scholar 

  45. Miyashita H, Shimmura S, Kobayashi H, et al. Collagen-immobilized poly(vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium. J Biomed Mater Res B. 2006;76(1):56–63.

    Article  Google Scholar 

  46. Uchino Y, Shimmura S, Miyashita H, et al. Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium. J Biomed Mater Res B. 2007;81(1):201–6.

    Article  Google Scholar 

  47. Bakhshandeh H, Soleimani M, Hosseini SS, et al. Poly (epsilon-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea. Int J Nanomedicine. 2011;6:1509–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Myung D, Koh W, Bakri A, et al. Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Biomed Microdevices. 2007;9(6):911–22.

    Article  CAS  PubMed  Google Scholar 

  49. Zheng LL, Vanchinathan V, Dalal R, et al. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea. J Biomed Mater Res A. 2015;103(10):3157–65.

    Article  CAS  PubMed  Google Scholar 

  50. Deng C, Li F, Hackett JM, et al. Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomater. 2010;6(1):187–94.

    Article  CAS  PubMed  Google Scholar 

  51. Merrett K, Fagerholm P, McLaughlin CR, et al. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Invest Ophthalmol Vis Sci. 2008;49(9):3887–94.

    Article  PubMed  Google Scholar 

  52. Fagerholm P, Lagali NS, Merrett K, et al. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med. 2010;2(46):46ra61.

    Article  PubMed  Google Scholar 

  53. Hackett JM, Lagali N, Merrett K, et al. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model. Invest Ophthalmol Vis Sci. 2011;52(2):651–7.

    Article  CAS  PubMed  Google Scholar 

  54. Islam MM, Cepla V, He C, et al. Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomater. 2015;12:70–80.

    Article  Google Scholar 

  55. Avadhanam VS, Liu CS. A brief review of Boston type-1 and osteo-odonto keratoprostheses. Br J Ophthalmol. 2015;99(7):878–87.

    Article  PubMed  Google Scholar 

  56. • Tan A, Tan DT, Tan XW, Mehta JS. Osteo-odonto keratoprosthesis: systematic review of surgical outcomes and complication rates. Ocul Surf 2012;10(1):15–25. This systematic review of OOKP outcomes demonstrates a high long term rate of retention and relatively low rate of complictations.

  57. Liu C, Paul B, Tandon R, et al. The osteo-odonto-keratoprosthesis (OOKP). Semin Ophthalmol. 2005;20(2):113–28.

    Article  PubMed  Google Scholar 

  58. Viitala R, Franklin V, Green D, et al. Towards a synthetic osteo-odonto-keratoprosthesis. Acta Biomater. 2009;5(1):438–52.

    Article  CAS  PubMed  Google Scholar 

  59. Laattala K, Huhtinen R, Puska M, et al. Bioactive composite for keratoprosthesis skirt. J Mech Behav Biomed Mater. 2011;4(8):1700–8.

    Article  CAS  PubMed  Google Scholar 

  60. Sandeman SR, Howell CA, Mikhalovsky SV, et al. Inflammatory cytokine removal by an activated carbon device in a flowing system. Biomaterials. 2008;29(11):1638–44.

    Article  CAS  PubMed  Google Scholar 

  61. Han HM, Phillips GJ, Mikhalovsky SV, et al. Sonoelectrochemical deposition of calcium phosphates on carbon materials: effect of current density. J Mater Sci Mater Med. 2008;19(4):1787–91.

    Article  CAS  PubMed  Google Scholar 

  62. Sandeman SR, Jeffery H, Howell CA, et al. The in vitro corneal biocompatibility of hydroxyapatite-coated carbon mesh. Biomaterials. 2009;30(18):3143–9.

    Article  CAS  PubMed  Google Scholar 

  63. Tan XW, Perera AP, Tan A, et al. Comparison of candidate materials for a synthetic osteo-odonto keratoprosthesis device. Invest Ophthalmol Vis Sci. 2011;52(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  64. Tan XW, Riau A, Shi ZL, et al. In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt. Br J Ophthalmol. 2012;96(9):1252–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Szurman P, Warga M, Roters S, et al. Experimental implantation and long-term testing of an intraocular vision aid in rabbits. Arch Ophthalmol. 2005;123(7):964–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Q. Yu.

Ethics declarations

Disclosure

Charles Yu declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Ocular Prosthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, C.Q. Biomaterials: Impact on Keratoprosthesis Implantation. Curr Ophthalmol Rep 4, 106–115 (2016). https://doi.org/10.1007/s40135-016-0099-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-016-0099-7

Keywords

Navigation