Skip to main content

Advertisement

Log in

Stem Cell Therapy for the Treatment of Dry Age-Related Macular Degeneration

  • Therapies in Age-Related Macular Degeneration (R. Goldhardt, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is a progressive disease of photoreceptors and retinal pigment epithelium (RPE). Geographic atrophy (GA) is initiated by dysfunction and loss of RPE cells followed by photoreceptor loss. Thus, replacing lost and sick RPE with healthy cells may restore vision in GA. Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) are two main sources for this replacement. There are currently two major approaches to RPE stem cell integration with the human retina. The first employs bolus injections of RPE cell suspension under the retina and the second relies on prefabricated RPE stem cell sheets implanted in the subretinal space. Due to immune considerations, current hESC-RPE trials use immunosuppressant medications for a limited period up to, during, and after implantation. RPE stem cell grafts show great promise in restoring vision in patients with geographic atrophy due to AMD, as limited clinical trials in humans have already shown positive results, and more results are forthcoming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72. doi:10.1001/archopht.122.4.564.

    Article  PubMed  Google Scholar 

  2. Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002;134(3):411–31.

    Article  CAS  PubMed  Google Scholar 

  3. Holz FG, Strauss EC, Schmitz-Valckenberg S, van Lookeren Campagne M. Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology. 2014;121(5):1079–91. doi:10.1016/j.ophtha.2013.11.023.

    Article  PubMed  Google Scholar 

  4. Zamiri P, Masli S, Streilein JW, Taylor AW. Pigment epithelial growth factor suppresses inflammation by modulating macrophage activation. Invest Ophthalmol Vis Sci. 2006;47(9):3912–8. doi:10.1167/iovs.05-1267.

    Article  PubMed  Google Scholar 

  5. Zhu D, Deng X, Spee C, Sonoda S, Hsieh CL, Barron E, et al. Polarized secretion of PEDF from human embryonic stem cell-derived RPE promotes retinal progenitor cell survival. Invest Ophthalmol Vis Sci. 2011;52(3):1573–85. doi:10.1167/iovs.10-6413.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. •• Zarbin MA, Rosenfeld PJ. Pathway-based therapies for age-related macular degeneration: an integrated survey of emerging treatment alternatives. Retina. 2010;30(9):1350–67. doi:10.1097/IAE.0b013e3181f57e30. An excellent review of the pathophysiologic events contributing to the development of AMD. The available and potential therapeutics targeting each pathophysiologic pathway is discussed.

  7. Shen JK, Dong A, Hackett SF, Bell WR, Green WR, Campochiaro PA. Oxidative damage in age-related macular degeneration. Histol Histopathol. 2007;22(12):1301–8.

    CAS  PubMed  Google Scholar 

  8. Myers CE, Klein BE, Gangnon R, Sivakumaran TA, Iyengar SK, Klein R. Cigarette smoking and the natural history of age-related macular degeneration: the beaver dam eye study. Ophthalmology. 2014;121(10):1949–55. doi:10.1016/j.ophtha.2014.04.040.

    Article  PubMed  Google Scholar 

  9. Chakravarthy U, McKay GJ, de Jong PT, Rahu M, Seland J, Soubrane G, et al. ARMS2 increases the risk of early and late age-related macular degeneration in the European eye study. Ophthalmology. 2013;120(2):342–8. doi:10.1016/j.ophtha.2012.08.004.

    Article  PubMed  Google Scholar 

  10. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res. 2001;20(6):705–32.

    Article  CAS  PubMed  Google Scholar 

  11. Grunwald JE, Metelitsina TI, Dupont JC, Ying GS, Maguire MG. Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest Ophthalmol Vis Sci. 2005;46(3):1033–8. doi:10.1167/iovs.04-1050.

    Article  PubMed  Google Scholar 

  12. Age-Related Eye Disease Study Research G. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins c and e, beta carotene, and zinc for age-related macular degeneration and vision loss: areds report no. 8. Arch Ophthalmol. 2001;119(10):1417–36.

    Article  Google Scholar 

  13. Joussen AM, Joeres S, Fawzy N, Heussen FM, Llacer H, van Meurs JC, et al. Autologous translocation of the choroid and retinal pigment epithelium in patients with geographic atrophy. Ophthalmology. 2007;114(3):551–60. doi:10.1016/j.ophtha.2006.08.016.

    Article  PubMed  Google Scholar 

  14. Majji AB, de Juan E, Jr. Retinal pigment epithelial autotransplantation: morphological changes in retina and choroid. Graefe’s Arch Clin Exp Ophthalmol. 2000;238(9):779–91.

    Article  CAS  Google Scholar 

  15. Treumer F, Bunse A, Klatt C, Roider J. Autologous retinal pigment epithelium-choroid sheet transplantation in age related macular degeneration: morphological and functional results. Br J Ophthalmol. 2007;91(3):349–53. doi:10.1136/bjo.2006.102152.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Weisz JM, Humayun MS, De Juan E Jr, Del Cerro M, Sunness JS, Dagnelie G, et al. Allogenic fetal retinal pigment epithelial cell transplant in a patient with geographic atrophy. Retina. 1999;19(6):540–5.

    Article  CAS  PubMed  Google Scholar 

  17. •• Hu Y, Liu L, Lu B, Zhu D, Ribeiro R, Diniz B et al. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res. 2012;48(4):186–91. doi:10.1159/000338749. The authors implanted a monolayer of hESC-RPE on an ultrathin parylene membrane in subretinal space of RCS rats. Anatomic and histologic proof of feasibility of such an approach is presented.

  18. Buchholz DE, Pennington BO, Croze RH, Hinman CR, Coffey PJ, Clegg DO. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med. 2013;2(5):384–93. doi:10.5966/sctm.2012-0163.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. •• Carr AJ, Smart MJ, Ramsden CM, Powner MB, da Cruz L, Coffey PJ. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci. 2013. doi:10.1016/j.tins.2013.03.006. A Short review of human embryonic stem cell therapies for the treatment of AMD.

  20. • Pan CK, Heilweil G, Lanza R, Schwartz SD. Embryonic stem cells as a treatment for macular degeneration. Expert Opin Biol Ther. 2013. doi:10.1517/14712598.2013.793304. A brief review concerning the use of embryonic stem cell in the treatment of macular degeneration.

  21. Schraermeyer U, Thumann G, Luther T, Kociok N, Armhold S, Kruttwig K, et al. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats. Cell Transpl. 2001;10(8):673–80.

    CAS  Google Scholar 

  22. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 2004;6(3):217–45. doi:10.1089/clo.2004.6.217.

    Article  CAS  PubMed  Google Scholar 

  23. •• Ramsden CM, Powner MB, Carr AJ, Smart MJ, da Cruz L, Coffey PJ. Stem cells in retinal regeneration: past, present and future. Development. 2013;140(12):2576–85. doi:10.1242/dev.092270. An excellent review of the utility of stem cell based therapies for retinal degeneration.

  24. Ambrosi DJ, Rasmussen TP. Reprogramming mediated by stem cell fusion. J Cell Mol Med. 2005;9(2):320–30.

    Article  CAS  PubMed  Google Scholar 

  25. Gill KP, Hewitt AW, Davidson KC, Pebay A, Wong RCB. Methods of retinal ganglion cell differentiation from pluripotent stem cells. Transl Vis Sci Technol. 2014;3(4):2. doi:10.1167/tvst.3.4.2.

    Article  Google Scholar 

  26. Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauve Y, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells. 2007;25(3):602–11. doi:10.1634/stemcells.2006-0308.

    Article  CAS  PubMed  Google Scholar 

  27. Smith LE. Bone marrow-derived stem cells preserve cone vision in retinitis pigmentosa. J Clin Investig. 2004;114(6):755–7. doi:10.1172/JCI22930.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wang S, Lu B, Girman S, Duan J, McFarland T, Zhang QS, et al. Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One. 2010;5(2):e9200. doi:10.1371/journal.pone.0009200.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina. 2011;31(6):1207–14. doi:10.1097/IAE.0b013e3181f9c242.

    Article  PubMed  Google Scholar 

  30. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8(3):189–99. doi:10.1089/clo.2006.8.189.

    Article  CAS  PubMed  Google Scholar 

  32. Carr AJ, Vugler A, Lawrence J, Chen LL, Ahmado A, Chen FK, et al. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis. 2009;15:283–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Klimanskaya I, Chung Y, Meisner L, Johnson J, West MD, Lanza R. Human embryonic stem cells derived without feeder cells. Lancet. 2005;365(9471):1636–41. doi:10.1016/S0140-6736(05)66473-2.

    Article  CAS  PubMed  Google Scholar 

  34. Lu B, Malcuit C, Wang S, Girman S, Girman S, Francis P, Francis P, Francis P, Lemieux L, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells (Dayton, Ohio). 2009;27(9):2126–35. doi:10.1002/stem.149.

    Article  CAS  Google Scholar 

  35. • Croze RH, Buchholz DE, Radeke MJ, Thi WJ, Hu Q, Coffey PJ et al. ROCK inhibition extends passage of pluripotent stem cell-derived retinal pigmented epithelium. Stem Cells Transl Med. 2014;3(9):1066–78. doi:10.5966/sctm.2014-0079. The authors show how to improve hESC-RPE and iPSC-RPE derivation and expansion efficiency.

  36. • Rowland TJ, Blaschke AJ, Buchholz DE, Hikita ST, Johnson LV, Clegg DO. Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med. 2013;7(8):642–53. doi:10.1002/term.1458. This paper shows the extracellular matrix composition for optimal differentiation of iPSC to RPE monolayer. This may assist with future scaffold design for iSC-RPE manolayer transplants.

  37. •• Kanemura H, Go MJ, Shikamura M, Nishishita N, Sakai N, Kamao H et al. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PloS One. 2014;9(1):e85336. doi:10.1371/journal.pone.0085336. iPSC-RPE sheets were transplanted in the subretinal space and in subcutaneous area of immunosuppressed animals. The authors conclude that tumorogenecity potential of iPSC-RPE is negligible.

  38. • Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med. 2012;18:1312–9. doi:10.2119/molmed.2012.00242. A report highlighting human iPSC-RPE suspensions which were injected in the subretinal space of a mouse model of retinitis pigmentosa. iPSC-RPE survived in the subretinal space and the animals showed visual recovery. No tumor was formed.

  39. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B, Phys Biol Sci. 2009;85(8):348–62.

    Article  CAS  Google Scholar 

  40. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  41. Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 2009;4(12):e8152. doi:10.1371/journal.pone.0008152.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 2009;458(3):126–31. doi:10.1016/j.neulet.2009.04.035.

    Article  CAS  PubMed  Google Scholar 

  43. •• Cyranoski D. Japanese woman is first recipient of next-generation stem cells. 2014. http://www.nature.com/news/japanese-woman-is-first-recipient-of-next-generation-stem-cells-1.15915. Accessed 17 Nov 2014. The announcement of the first recipient of an iPSC-RPE transplant.

  44. •• Hynes SR, Lavik EB. A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol. 2010;248(6):763–78. doi:10.1007/s00417-009-1263-7. An excellent review of possible subretinal scaffold materials and a summary of two fabrication techniques with relevant references highlighting biocompatibility studies.

  45. Tomita M, Lavik E, Klassen H, Klassen H, Zahir T, Langer R, Young MJ. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells. 2005;23(10):1579–88. doi:10.1634/stemcells.2005-0111.

    Article  PubMed  Google Scholar 

  46. Del Priore LV, Geng L, Tezel TH, Kaplan HJ. Extracellular matrix ligands promote RPE attachment to inner Bruch’s membrane. Curr Eye Res. 2002;25(2):79–89.

    Article  PubMed  Google Scholar 

  47. Del Priore LV, Tezel TH. Reattachment rate of human retinal pigment epithelium to layers of human Bruch’s membrane. Arch Ophthalmol. 1998;116(3):335–41.

    Article  PubMed  Google Scholar 

  48. Gong J, Sagiv O, Cai H, Tsang SH, Tsang SH, Del Priore LV. Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp Eye Res. 2008;86(6):957–65. doi:10.1016/j.exer.2008.03.014.

    Article  CAS  PubMed  Google Scholar 

  49. Tezel TH, Del Priore LV, Kaplan HJ. Reengineering of aged Bruch’s membrane to enhance retinal pigment epithelium repopulation. Invest Ophthalmol Vis Sci. 2004;45(9):3337–48. doi:10.1167/iovs.04-0193.

    Article  PubMed  Google Scholar 

  50. Rodger DC, Fong AJ, Li W, Ameri H, Ahuja AK, Gutierrez C, et al. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens Actuators B-Chem. 2008;132(2):449–60. doi:10.1016/j.snb.2007.10.069.

    Article  CAS  Google Scholar 

  51. • Lu B, Zhu DH, Hinton D, Humayun MS, Tai YC. Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells. Biomed Microdevices. 2012;14(4):659–67. doi:10.1007/s10544-012-9645-8. The biologic features of an ultrathin parylene membrane as a platform for creating monolayers of hESC-RPE transplants are described. The nutrients and macromolecules can diffuse through the submicron pores in these membranes.

  52. Montezuma SR, Loewenstein J, Scholz C, Rizzo JF. Biocompatibility of materials implanted into the subretinal space of Yucatan pigs. Invest Ophthalmol Vis Sci. 2006;47(8):3514–22. doi:10.1167/iovs.06-0106.

    Article  PubMed  Google Scholar 

  53. •• Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20. doi: 10.1016/S0140-6736(12)60028-2. The first reported human clinical trial of using hESC-RPE. Reports the safety of subretinal injections of an hESC-RPE cell suspension in two patients, one with Stargardt’s disease and one with AMD.

  54. •• Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. (0). doi:http://dx.doi.org/10.1016/S0140-6736(14)61376-3. A phase 1/2 study to assess the safety and tolerability of subretinal transplantation of hESC-RPE in patients with Stargardt’s macular dystrophy and atrophic AMD. Patients were followed up for a median of 22 months. No evidence of adverse proliferation, rejection, or serious ocular or systemic safety issues related to the transplanted tissue was seen; however, the authors reported adverse events associated with vitreoretinal surgery and immunosuppression. Visual acuity improved in 56% of the eyes, improved or remained the same in 39% of the eyes and one eye (5%) lost more than ten letters. Vision-related quality-of-life measures were also increased in recipients of hESC-RPE cells.

  55. Streilein JW, Ma N, Wenkel H, Ng TF, Zamiri P. Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vis Res. 2002;42(4):487–95.

    Article  PubMed  Google Scholar 

  56. Zamiri P, Masli S, Kitaichi N, Taylor AW, Streilein JW. Thrombospondin plays a vital role in the immune privilege of the eye. Invest Ophthalmol Vis Sci. 2005;46(3):908–19. doi:10.1167/iovs.04-0362.

    Article  PubMed  Google Scholar 

  57. Opelz G, Wujciak T, Dohler B, Scherer S, Mytilineos J. HLA compatibility and organ transplant survival collaborative transplant study. Rev Immunogenet. 1999;1(3):334–42.

    CAS  PubMed  Google Scholar 

  58. Gabrielian K, Osusky R, Sippy BD, Ryan SJ, Hinton DR. Effect of TGF-beta on interferon-gamma-induced HLA-DR expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1994;35(13):4253–9.

    CAS  PubMed  Google Scholar 

  59. Algvere PV, Berglin L, Berglin L, Gouras P, Gouras P, Sheng Y, Kopp ED. Transplantation of RPE in age-related macular degeneration: observations in disciform lesions and dry RPE atrophy. Graefe’s Arch Clin Exp Ophthalmol. 1997;149(3):149–58.

    Article  Google Scholar 

  60. Algvere PV, Gouras P, Dafgard Kopp E. Long-term outcome of RPE allografts in non-immunosuppressed patients with AMD. Eur J Ophthalmol. 1999;9(3):217–30.

    CAS  PubMed  Google Scholar 

  61. Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol. 2008;146(2):172–82. doi:10.1016/j.ajo.2008.04.009.

    Article  PubMed  Google Scholar 

  62. Gallegos TF, Sancho-Martinez I, Izpisua Belmonte JC. Advances in cellular reprogramming: moving toward a reprieve from immunogenicity. Immunol Lett. 2013;155(1–2):14–7. doi:10.1016/j.imlet.2013.09.019.

    Article  CAS  PubMed  Google Scholar 

  63. Liao JL, Yu J, Huang K, Hu J, Diemer T, Ma Z, et al. Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum Mol Genet. 2010;19(21):4229–38. doi:10.1093/hmg/ddq341.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. •• Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep. 2014;2(2):205-18. doi:10.1016/j.stemcr.2013.12.007. Monolayer sheets of iPSC-RPE without any artificial scaffolds were generated and optimized to meet clinical use requirements, including quality, quantity, consistency, and safety. Additionally, autologous nonhuman primate iPSC-RPE cell sheets implanted in the subretinal space did not demonstrate immune rejection or tumor formation. The authors suggest that autologous hiPSC-RPE cell sheets may serve as tissue replacement therapy for AMD.

  65. • Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212–5. doi:10.1038/nature10135. A concise review of the immunogenicity considerations of iPSCs.

  66. Hu Q, Friedrich AM, Johnson LV, Clegg DO. Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells. 2010;28(11):1981–91. doi:10.1002/stem.531.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Dr. Olmos reports funding from Science Based Health, outside the submitted work. Dr. Nazari and Dr. Rodger have no conflicts of interests to disclose. Dr. Humayun reports he is a founder of Regenerative Patch Technologies, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa C. Olmos.

Additional information

This article is part of the Topical Collection on Therapies in Age-Related Macular Degeneration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olmos, L.C., Nazari, H., Rodger, D.C. et al. Stem Cell Therapy for the Treatment of Dry Age-Related Macular Degeneration. Curr Ophthalmol Rep 3, 16–25 (2015). https://doi.org/10.1007/s40135-014-0058-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-014-0058-0

Keywords

Navigation