Hip Fractures: A Practical Approach to Diagnosis and Treatment


Purpose of Review

To summarize relevant anatomy, imaging, and treatment of hip fractures, and to synthesize a treatment-based approach for description and classification of hip fractures.

Recent Findings

Hip fractures are predominantly seen in the elderly, where they are increasing in incidence, and can substantially reduce healthy life-years. The osseous and vascular anatomy of the proximal femur can help to understand the clinical implications of various types of hip fracture. Radiographs are the principal imaging modality for assessment of hip fracture, although there is a clear role for CT and MRI for assessment of radiographically occult fractures. There are multiple classifications of hip fractures in the orthopedic literature; however, these are not commonly used in clinical practice due to complexity, poor reported inter-observer agreement, and relatively few methods of surgical fixation.


A simplified anatomic and treatment-based approach to hip fractures can help guide image interpretation and clinical management.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Gutiérrez L, Roskell N, Castellsague J, Beard S, Rycroft C, Abeysinghe S, et al. Clinical burden and incremental cost of fractures in postmenopausal women in the United Kingdom. Bone. 2012;51(3):324–31.

    Article  PubMed  Google Scholar 

  2. 2.

    Papadimitriou N, Tsilidis KK, Orfanos P, Benetou V, Ntzani EE, Soerjomataram I, et al. Burden of hip fracture using disability-adjusted life-years: a pooled analysis of prospective cohorts in the CHANCES consortium. Lancet Public Health. 2017;2(5):e239–46.

    Article  PubMed  Google Scholar 

  3. 3.

    Cummings SR, Rubin SM, Black D. The future of hip fractures in the United States. Numbers, costs, and potential effects of postmenopausal estrogen. Clin Orthop Relat Res. 1990;252:163–6.

    Google Scholar 

  4. 4.

    Barnes R, Brown J, Garden R. Subcapital fractures of the femur. J Bone Joint Surg. 1976;58:2–24.

    Article  CAS  Google Scholar 

  5. 5.

    Cheung WH, Miclau T, Chow SKH, Yang FF, Alt V. Fracture healing in osteoporotic bone. Injury. 2016;47:S21–6.

    Article  PubMed  Google Scholar 

  6. 6.

    Pidgeon TS, Johnson JP, Deren ME, Evans AR, Hayda RA. Analysis of mortality and fixation failure in geriatric fractures using quantitative computed tomography. Injury. 2017;49:249–55.

    Article  PubMed  Google Scholar 

  7. 7.

    Kerr R, Resnick D, Sartoris DJ, Kursunoglu S, Pineda C, Haghighi P, et al. Computerized tomography of proximal femoral trabecular patterns. J Orthop Res. 1986;4(1):45–56.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Stiehl JB, Jacobson D, Carrera G. Morphological analysis of the proximal femur using quantitative computed tomography. Int Orthop. 2007;31(3):287–92.

    Article  PubMed  Google Scholar 

  9. 9.

    Shivji FS, Green VL, Forward DP. Anatomy, classification and treatment of intracapsular hip fractures. Br J Hosp Med. 2015;76(5):290–5.

    Article  Google Scholar 

  10. 10.

    Stiles RG, Laverina CJ, Resnick D, Convery FR. The calcar femorale. An anatomic, radiologic, and surgical correlative study. Invest Radiol. 1990;25(12):1311–5.

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Zhang Q, Chen W, Liu H, Li Z, Song Z, Pan J, et al. The role of the calcar femorale in stress distribution in the proximal femur. Orthop Surg. 2009;1(4):311–6.

    Article  PubMed  Google Scholar 

  12. 12.

    Ly TV, Swiontkowski MF. Intracapsular hip fractures. In: Browner BD, Jupiter JB, Krettek C, Anderson PA, editors. Skeletal trauma: basic science, management, and reconstruction. 5th ed. Philadelphia: Saunders; 2014. p. 1607.e12–81.e12.

    Google Scholar 

  13. 13.

    • Sheehan SE, Shyu JY, Weaver MJ, Sodickson AD, Khurana B. Proximal femoral fractures: what the orthopedic surgeon wants to know. Radiographics. 2015;35(5):1563–84. Provides a comprehensive overview of proximal femur fractures, including a detailed description of mechanism of action and various classification systems.

  14. 14.

    Gautier E, Ganz K, Krügel N, Gill T, Ganz R. Anatomy of the medial femoral circumflex artery and its surgical implications. J Bone Joint Surg. 2000;82(5):679–83.

    Article  CAS  Google Scholar 

  15. 15.

    Koval KJ, Oh CK, Egol KA. Does a traction-internal rotation radiograph help to better evaluate fractures of the proximal femur? Bull NYU Hosp Joint Dis. 2008;66(2):102–6.

    Google Scholar 

  16. 16.

    Khurana B, Mandell J, Rocha T, Duran-Mendicuti M, Jimale H, Rosner B, et al. An internal rotation traction radiograph improves proximal femoral fracture classification accuracy and agreement. Am J Roentgenol. 2018, in Press.

  17. 17.

    Evans PD, Wilson C, Lyons K. Comparison of MRI with bone scanning for suspected hip fracture in elderly patients. J Bone Joint Surg Br. 1994;76(1):158–9.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Dominguez S, Liu P, Roberts C, Mandell M, Richman PB. Prevalence of traumatic hip and pelvic fractures in patients with suspected hip fracture and negative initial standard radiographs—a study of emergency department patients. Acad Emerg Med. 2005;12(4):366–9.

    PubMed  Google Scholar 

  19. 19.

    Rizzo PF, Gould ES, Lyden JP, Asnis SE. Diagnosis of occult fractures about the hip. Magnetic resonance imaging compared with bone-scanning. J Bone Joint Surg Am. 1993;75(3):395–401.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Hossain M, Barwick C, Sinha AK, Andrew JG. Is magnetic resonance imaging (MRI) necessary to exclude occult hip fracture? Injury. 2007;38(10):1204–8.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Bogost GA, Lizerbram EK, Crues JV. MR imaging in evaluation of suspected hip fracture: frequency of unsuspected bone and soft-tissue injury. Radiology. 1995;197(1):263–7.

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    May DA, Purins JL, Smith DK. MR imaging of occult traumatic fractures and muscular injuries of the hip and pelvis in elderly patients. Am J Roentgenol. 1996;166(5):1075–8.

    Article  CAS  Google Scholar 

  23. 23.

    Pandey R, McNally E, Ali A, Bulstrode C. The role of MRI in the diagnosis of occult hip fractures. Injury. 1998;29(1):61–3.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Khurana B, Okanobo H, Ossiani M, Ledbetter S, Al Dulaimy K, Sodickson A. Abbreviated MRI for patients presenting to the emergency department with hip pain. Am J Roentgenol. 2012;198(6):17–9.

    Article  Google Scholar 

  25. 25.

    Rehman H, Clement RGE, Perks F, White TO. Imaging of occult hip fractures: CT or MRI? Injury. 2016;47(6):1297–301.

    Article  PubMed  Google Scholar 

  26. 26.

    Thomas RW, Williams HLM, Carpenter EC, Lyons K. The validity of investigating occult hip fractures using multidetector CT. Br J Radiol. 2016;89(1060):20150250.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gill SK, Smith J, Fox R, Chesser TJS. Investigation of occult hip fractures: the use of CT and MRI. Sci World J. 2013;2013:10–3.

    Article  Google Scholar 

  28. 28.

    Heikal S, Riou P, Jones L. The use of computed tomography in identifying radiologically occult hip fractures in the elderly. Ann R Coll Surg Engl. 2014;96(3):234–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Hakkarinen DK, Banh KV, Hendey GW. Magnetic resonance imaging identifies occult hip fractures missed by 64-slice computed tomography. J Emerg Med. 2012;43(2):303–7.

    Article  PubMed  Google Scholar 

  30. 30.

    Haubro M, Stougaard C, Torfing T, Overgaard S. Sensitivity and specificity of CT- and MRI-scanning in evaluation of occult fracture of the proximal femur. Injury. 2015;46(8):1557–61.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Collin D, Geijer M, Göthlin JH. Computed tomography compared to magnetic resonance imaging in occult or suspect hip fractures. A retrospective study in 44 patients. Eur Radiol. 2016;26(11):3932–8.

    Article  PubMed  Google Scholar 

  32. 32.

    Sadozai Z, Davies R, Warner J. The sensitivity of CT scans in diagnosing occult femoral neck fractures. Injury. 2016;47(12):2769–71.

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Mandell JC, Weaver MJ, Khurana B. Computed tomography for occult fractures of the proximal femur, pelvis, and sacrum in clinical practice: single institution, dual-site experience. Emerg Radiol. 2018. https://doi.org/10.1007/s10140-018-1580-4.

    Article  PubMed  Google Scholar 

  34. 34.

    • Kellock TT, Nicolaou S, Kim SSY, Al-Busaidi S, Louis LJ, O’Connell TW, et al. Detection of bone marrow edema in nondisplaced hip fractures: utility of a virtual noncalcium dual-energy CT application. Radiology. 2017;284(3):798–805. Describes the use of dual-energy CT in detecting bone marrow edema in the setting of nondisplaced hip fractures.

  35. 35.

    Mandell JC, Marshall RA, Weaver MJ, Harris MB, Sodickson AD, Khurana B. Traumatic hip dislocation: what the orthopedic surgeon wants to know. Radiographics. 2017;37(7):2181–201.

    Article  PubMed  Google Scholar 

  36. 36.

    De Palma L, Santucci A, Verdenelli A, Bugatti MG, Meco L, Marinelli M. Outcome of unstable isolated fractures of the posterior acetabular wall associated with hip dislocation. Eur J Orthop Surg Traumatol. 2014;24(3):341–6.

    Article  PubMed  Google Scholar 

  37. 37.

    Upadhyay SS, Moulton A, Srikrishnamurthy K. An analysis of the late effects of traumatic posterior dislocation of the hip without fractures. J Bone Joint Surg Br. 1983;65(2):150–2.

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Sahin V, Karakaş ES, Aksu S, Atlihan D, Turk CY, Halici M. Traumatic dislocation and fracture-dislocation of the hip: a long-term follow-up study. J Trauma. 2003;54(3):520–9.

    Article  PubMed  Google Scholar 

  39. 39.

    Hougaard K, Thomsen PB. Traumatic posterior dislocation of the hip–prognostic factors influencing the incidence of avascular necrosis of the femoral head. Arch Orthop Trauma Surg. 1986;106(1):32–5.

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Ebraheim NA, Savolaine ER, Skie MC, Hoeflinger MJ. Soft-tissue window to enhance visualization of entrapped osteocartilaginous fragments in the hip joint. Orthop Rev. 1993;22(9):1017–21.

    PubMed  CAS  Google Scholar 

  41. 41.

    Mandell JC, Marshall RA, Banffy MB, Khurana B, Weaver MJ. Arthroscopy after traumatic hip dislocation: a systematic review of intra-articular findings, correlation with magnetic resonance imaging and computed tomography, treatments, and outcomes. Arthroscopy. 2017;34:917–27.

    Article  PubMed  Google Scholar 

  42. 42.

    Pipkin G. Treatment of grade IV fracture-dislocation of the hip. J Bone Joint Surg Am. 1957;39–A(5):1027–42.

    Article  PubMed  Google Scholar 

  43. 43.

    Richardson P, Young JWR, Porter D. CT detection of cortical fracture of the femoral head associated with posterior hip dislocation. Am J Roentgenol. 1990;155(1):93–4.

    Article  CAS  Google Scholar 

  44. 44.

    Keith JE, Brashear HR, Guilford WB. Stability of posterior fracture-dislocations of the hip. Quantitative assessment using computed tomography. J Bone Joint Surg Am. 1988;70(5):711–4.

    Article  PubMed  Google Scholar 

  45. 45.

    Moed BR, Ajibade DA, Israel H. Computed tomography as a predictor of hip stability status in posterior wall fractures of the acetabulum. J Orthop Trauma. 2009;23(1):7–15.

    Article  PubMed  Google Scholar 

  46. 46.

    Davis AT, Moed BR. Can experts in acetabular fracture care determine hip stability after posterior wall fractures using plain radiographs and computed tomography? J Orthop Trauma. 2013;27(10):587–91.

    Article  PubMed  Google Scholar 

  47. 47.

    Birmingham P, Cluett J, Shaffer B. Recurrent posterior dislocation of the hip with a bankart-type lesion: a case report. Am J Sports Med. 2010;38(2):388–91.

    Article  PubMed  Google Scholar 

  48. 48.

    Farooq MA, Orkazai SH, Okusanya O, Devitt AT. Intracapsular fractures of the femoral neck in younger patients. Ir J Med Sci. 2010;174(4):42–5.

    Article  Google Scholar 

  49. 49.

    Thomsen NOB, Jensen CM, Skovgaard N, Pedersen MS, Pallesen P, Soe-Nielsen NH, et al. Observer variation in the radiographic classification of fractures of the neck of the femur using Garden’s system. Int Orthop. 1996;20(5):326–9.

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Frandsen PA, Andersen E, Madsen F, Skjødt T. Garden’s classification of femoral neck fractures. An assessment of inter-observer variation. J Bone Joint Surg Br. 1988;70(4):588–90.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Parker J, Dynan Y. Is Pauwels still valid ? Injury. 1998;29(7):521–3.

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Blundell CM, Parker MJ, Pryor GA, Hopkinson-Woolley J, Bhonsle SS. Assessment of the AO classification of intracapsular fractures of the proximal femur. J Bone Joint Surg Br. 1998;80(4):679–83.

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Rajan DT, Parker MJ. Does the level of an intracapsular femoral fracture influence fracture healing after internal fixation? A study of 411 patients. Injury. 2001;32(1):53–6.

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Parker MJ. The management of intracapsular fractures of the proximal femur. J Bone Joint Surg Br. 2000;82(7):937–41.

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    • Watson ST, Schaller TM, Tanner SL, Adams JD, Jeray KJ. Outcomes of low-energy basicervical proximal femoral fractures treated with cephalomedullary fixation. J Bone Joint Surg Am. 2016;98(13):1097–102. Basicervical fractures are rare. This report emphasizes the importance of accurately identifying these fractures.

  56. 56.

    Lee KH, Kim HM, Kim YS, Jeong C, Moon CW, Lee SU, et al. Isolated fractures of the greater trochanter with occult intertrochanteric extension. Arch Orthop Trauma Surg. 2010;130(10):1275–80.

    Article  PubMed  Google Scholar 

  57. 57.

    Leslie MP, Baumgaertner MR. Intertrochanteric hip fractures. In: Skeletal trauma: basic science, management, and reconstruction, vol 2, 5th ed. Elsevier Inc., Amsterdam; 2003. pp. 1683.e3–720.e3.

  58. 58.

    Craig JG, Moed BR, Eyler WR, Van Holsbeeck M. Fractures of the greater trochanter: intertrochanteric extension shown by MR imaging. Skeletal Radiol. 2000;29(10):572–6.

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Reiter M, O’Brien SD, Bui-Mansfield LT, Alderete J. Greater trochanteric fracture with occult intertrochanteric extension. Emerg Radiol. 2013;20(5):469–72.

    Article  PubMed  Google Scholar 

  60. 60.

    Chung PH, Kang S, Kim JP, Kim YS, Lee HM, Back IH, et al. Occult intertrochanteric fracture mimicking the fracture of greater trochanter. Hip Pelvis. 2016;28(2):112–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Kim S-J, Ahn J, Kim HK, Kim JH. Is magnetic resonance imaging necessary in isolated greater trochanter fracture? A systemic review and pooled analysis. BMC Musculoskelet Disord. 2015;16(1):395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. 62.

    Phillips CD, Pope TL, Jones JE, Keats TE, MacMillan RH. Nontraumatic avulsion of the lesser trochanter: a pathognomonic sign of metastatic disease? Skeletal Radiol. 1988;17(2):106–10.

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Rouvillain J-L, Jawahdou R, Labrada Blanco O, Benchikh-El-Fegoun A, Enkaoua E, Uzel M. Isolated lesser trochanter fracture in adults: an early indicator of tumor infiltration. Orthop Traumatol Surg Res. 2011;97(2):217–20.

    Article  PubMed  Google Scholar 

  64. 64.

    Pervez H, Parker MJ, Pryor GA, Lutchman L, Chirodian N. Classification of trochanteric fracture of the proximal femur: a study of the reliability of current systems. Injury. 2002;33(8):713–5.

    Article  PubMed  Google Scholar 

  65. 65.

    Andersen E, Jørgensen LG, Hededam LT. Evans’ classification of trochanteric fractures: an assessment of the interobserver and intraobserver reliability. Injury. 1990;21(6):377–8.

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    Guyver PM, McCarthy MJH, Jain NPM, Poulter RJ, McAllen CJP, Keenan J. Is there any purpose in classifying subtrochanteric fractures? The reproducibility of four classification systems. Eur J Orthop Surg Traumatol. 2014;24(4):513–8.

    Article  PubMed  CAS  Google Scholar 

  67. 67.

    Phillips HK, Harrison SJ, Akrawi H, Sidhom SA. Retrospective review of patients with atypical bisphosphonate related proximal femoral fractures. Injury. 2017;48(6):1159–64.

    Article  PubMed  CAS  Google Scholar 

  68. 68.

    •• Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2014;29(1):1–23. This task force report describes the imaging findings critical to identify atypical femoral fractures.

Download references

Author information



Corresponding author

Correspondence to Bharti Khurana.

Ethics declarations

Conflict of interest

Jacob C. Mandell, Michael J. Weaver, Mitchel B. Harris, and Bharti Khurana each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Emergency Radiology.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mandell, J.C., Weaver, M.J., Harris, M.B. et al. Hip Fractures: A Practical Approach to Diagnosis and Treatment. Curr Radiol Rep 6, 20 (2018). https://doi.org/10.1007/s40134-018-0281-9

Download citation


  • Hip fractures
  • Imaging
  • Emergency radiology