Skip to main content

Advertisement

Log in

Insufficiency Fractures After Radiation Therapy: An Update

  • Geriatrics (G Guglielmi, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Radio therapy, alone or in combination with surgery and/or chemotherapy, is commonly used to treat a variety of neoplasms, resulting in effective local tumor control. Unfortunately radiation therapy can also change the structure of the skeletal system, leading to edema, vascular congestion, areas of hemorrhage, loss of cellularity, focal bone marrow changes, fatty transformation, osteitis, hematopoietic marrow regeneration, osteolysis of symphysis pubis or sacroiliac joints, avascular necrosis, insufficiency fractures, osteoradionecrosis, and radiation-induced neoplasms.

Recent Findings

The various radiotherapy effects can be studied and diagnosed by analyzing MR signal intensity, CT attenuation, and FDG-PET activity.

Summary

In this review, we report a complete analysis of side effects of radiotherapy on bones, focusing on the spine, chest wall, and pelvis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

D 0.5:

Dose of RT at 0.5% of rib

EBRT:

External beam RT

HDR-ICBT:

High-dose-rate intracavitary brachytherapy

MRI:

Magnetic resonance imaging

NSCLC:

Non-small-cell lung cancer

PIF:

Pelvic insufficiency fracture

SBRT:

Stereotactic body radiotherapy

SINS:

Spinal instability neoplastic score

SRS:

Stereotactic radiosurgery

V25:

Volume of rib receiving at least 25 Gy

VCF:

Vertebral compression fractures

References

Papers of particular interest, published recently, have been highlighted as: •• Of outstanding importance

  1. Ugurluer G, Akbas T, Arpaci T, Ozcan N, Serin M. Bone complications after pelvic radiation therapy: evaluation with MRI. J Med Imaging Radiat Oncol. 2014;58(3):334–40. https://doi.org/10.1111/1754-9485.12176.

    Article  PubMed  Google Scholar 

  2. Al-Omair A, Smith R, Kiehl TR, Lao L, Yu E, Massicotte EM, et al. Radiation-induced vertebral compression fracture following spine stereotactic radiosurgery: clinicopathological correlation. Report of 2 cases. J Neurosurg Spine. 2013;18(5):430–5. https://doi.org/10.3171/2013.2.spine12739.

    Article  PubMed  Google Scholar 

  3. Sahgal A, Atenafu EG, Chao S, Al-Omair A, Boehling N, Balagamwala EH, et al. Vertebral compression fracture after spine stereotactic body radiotherapy: a multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J Clin Oncol. 2013;31(27):3426–31. https://doi.org/10.1200/jco.2013.50.14111.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Foote M, Letourneau D, Hyde D, Massicotte E, Rampersaud R, Fehlings M, et al. Technique for stereotactic body radiotherapy for spinal metastases. J Clin Neurosci. 2011;18(2):276–9. https://doi.org/10.1016/j.jocn.2010.04.033.

    Article  PubMed  Google Scholar 

  5. Sahgal A, Ma L, Weinberg V, Gibbs IC, Chao S, Chang UK, et al. Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(1):107–16. https://doi.org/10.1016/j.ijrobp.2010.08.021.

    Article  PubMed  Google Scholar 

  6. Sahgal A, Weinberg V, Ma L, Chang E, Chao S, Muacevic A, et al. Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys. 2013;85(2):341–7. https://doi.org/10.1016/j.ijrobp.2012.05.007.

    Article  PubMed  Google Scholar 

  7. Cunha MV, Al-Omair A, Atenafu EG, Masucci GL, Letourneau D, Korol R, et al. Vertebral compression fracture (VCF) after spine stereotactic body radiation therapy (SBRT): analysis of predictive factors. Int J Radiat Oncol Biol Phys. 2012;84(3):e343–9. https://doi.org/10.1016/j.ijrobp.2012.04.034.

    Article  PubMed  Google Scholar 

  8. Boehling NS, Grosshans DR, Allen PK, McAleer MF, Burton AW, Azeem S, et al. Vertebral compression fracture risk after stereotactic body radiotherapy for spinal metastases. J Neurosurg Spine. 2012;16(4):379–86. https://doi.org/10.3171/2011.11.spine116.

    Article  PubMed  Google Scholar 

  9. Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine. 2010;35(22):E1221–9. https://doi.org/10.1097/brs.0b013e3181e16ae2.

    Article  PubMed  Google Scholar 

  10. Fourney DR, Frangou EM, Ryken TC, Dipaola CP, Shaffrey CI, Berven SH, et al. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol. 2011;29(22):3072–7. https://doi.org/10.1200/jco.2010.34.3897.

    Article  PubMed  Google Scholar 

  11. Nabil S, Samman N. Risk factors for osteoradionecrosis after head and neck radiation: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(1):54–69. https://doi.org/10.1016/j.tripleo.2011.07.042.

    Article  PubMed  Google Scholar 

  12. Zhuang Q, Zhang Z, Fu H, He J, He Y. Does radiation-induced fibrosis have an important role in pathophysiology of the osteoradionecrosis of jaw? Med Hypotheses. 2011;77:63–5. https://doi.org/10.1016/j.mehy.2011.03.024.

    Article  PubMed  Google Scholar 

  13. Rolton DJ, Blagg SE, Hughes RJ. Osteoradionecrosis of the lumbar spine 25 years after radiotherapy. J Bone Joint Surg Br. 2011;93:1279–81. https://doi.org/10.1302/0301-620x.93b9.25991.

    Article  PubMed  CAS  Google Scholar 

  14. Virk MS, Han JE, Reiner AS, McLaughlin LA, Sciubba DM, Lis E, et al. Frequency of symptomatic vertebral body compression fractures requiring intervention following single-fraction stereotactic radiosurgery for spinal metastases. Neurosurg Focus. 2017;42(1):E8. https://doi.org/10.3171/2016.10.focus16359.

    Article  PubMed  Google Scholar 

  15. Jawad MS, Fahim DK, Gerszten PC, Flickinger JC, Sahgal A, Grills IS, et al. On behalf of the Elekta Spine Radiosurgery Research Consortium. Vertebral compression fractures after stereotactic body radiation therapy: a large, multi-institutional, multinational evaluation. J Neurosurg Spine. 2016;24(6):928–36. https://doi.org/10.3171/2015.10.spine141261.

    Article  PubMed  Google Scholar 

  16. Nambu A, Onishi H, Aoki S, Tominaga L, Kuriyama K, Araya M, et al. Rib fracture after stereotactic radiotherapy for primary lung cancer: prevalence, degree of clinical symptoms, and risk factors. BMC Cancer. 2013;13:68. https://doi.org/10.1186/1471-2407-13-68.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303(11):1070–6. https://doi.org/10.1001/jama.2010.261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kim SS, Song SY, Kwak J, Ahn SD, Kim JH, Lee JS, et al. Clinical prognostic factors and grading system for rib fracture following stereotactic body radiation therapy (SBRT) in patients with peripheral lung tumors. Lung Cancer. 2013;79(2):161–6. https://doi.org/10.1016/j.lungcan.2012.10.011.

    Article  PubMed  Google Scholar 

  19. Taremi M, Hope A, Lindsay P, Dahele M, Fung S, Purdie TG, et al. Predictors of radiotherapy induced bone injury (RIBI) after stereotactic lung radiotherapy. Radiat Oncol. 2012;17(7):159. https://doi.org/10.1186/1748-717x-7-159.

    Article  Google Scholar 

  20. Andolino DL, Forquer JA, Henderson MA, Barriger RB, Shapiro RH, Brabham JG, et al. Chest wall toxicity after stereotactic body radiotherapy for malignant lesions of the lung and liver. Int J Radiat Oncol Biol Phys. 2011;80(3):692–7. https://doi.org/10.1016/j.ijrobp.2010.03.020.

    Article  PubMed  Google Scholar 

  21. Uyterlinde W, Chen C, Belderbos J, Sonke JJ, Lange C, de Bois J, et al. Fractures of thoracic vertebrae in patients with locally advanced non-small cell lung carcinoma treated with intensity modulated radiotherapy. Radiother Oncol. 2016;118:437–41. https://doi.org/10.1016/j.radonc.2015.11.011.

    Article  PubMed  Google Scholar 

  22. Nambu A, Onishi H, Aoki S, Koshiishi T, Kuriyama K, Komiyama T, et al. Rib fracture after tereotactic radiotherapy on follow-up thin-section computed tomography in 177 primary lung cancer patients. Radiat Oncol. 2011;13(6):137. https://doi.org/10.1186/1748-717x-6-137.

    Article  Google Scholar 

  23. Algan O, Confer M, Algan S, Matthiesen C, Herman T, Ahmad S, et al. Quantitative evaluation of correlation of dose and FDG-PET uptake value with clinical chest wall complications in patients with lung cancer treated with stereotactic body radiation therapy. J Xray Sci Technol. 2015;23(6):727–36. https://doi.org/10.3233/xst-150523.

    Article  PubMed  CAS  Google Scholar 

  24. Chan S, Rowbottom L, McDonald R, David E, Chung H, Yee A, et al. Pelvic insufficiency fractures in women following radiation treatment: a case series. Ann Palliat Med. 2016;5(3):233–7. https://doi.org/10.21037/apm.2016.05.01.

    Article  PubMed  Google Scholar 

  25. ••Oh D, Huh SJ. Insufficiency fracture after radiation therapy. Radiat Oncol J. 2014;32(4):213. https://doi.org/10.3857/roj.2014.32.4.213. Explains the characteristic imaging patterns of insufficiency fracture is essential to differentiate it from metastatic bone lesions, because it sometimes cause severe pain, and it may be confused with bone metastasis I believe that this work can also be taken into consideration because it explains the characteristic imaging patterns of insufficiency fracture is essential to differentiate it from metastatic bone lesions, because it sometimes cause severe pain, and it may be confused with bone metastasis.

  26. Kim HJ, Boland PJ, Meredith DS, Lis E, Zhang Z, Shi W, et al. Fractures of the sacrum after chemoradiation for rectal carcinoma: incidence, risk factors, and radiographic evaluation. Int J Radiat Oncol Biol Phys. 2012;84(3):694–9. https://doi.org/10.1016/j.ijrobp.2012.01.021.

    Article  PubMed  Google Scholar 

  27. Uezono H, Tsujino K, Moriki K, Nagano F, Ota Y, Sasaki R, et al. Pelvic insufficiency fracture after definitive radiotherapy for uterine cervical cancer: retrospective analysis of risk factors. J Radiat Res. 2013;54(6):1102–9. https://doi.org/10.1016/j.ijrobp.2012.01.021.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shih KK, Folkert MR, Kollmeier MA, Abu-Rustum NR, Sonoda Y, Leitao MM Jr, et al. Pelvic insufficiency fractures in patients with cervical and endometrial cancer treated with postoperative pelvic radiation. Gynecol Oncol. 2013;128(3):540–3. https://doi.org/10.1016/j.ygyno.2012.12.021.

    Article  PubMed  Google Scholar 

  29. Otani K, Teshima T, Ito Y, Kawaguchi Y, Konishi K, Takahashi H, et al. Risk factors for vertebral compression fractures in preoperative chemoradiotherapy with gemcitabine for pancreatic cancer. Radiother Oncol. 2016;118(3):424–9. https://doi.org/10.1016/j.radonc.2016.01.006.

    Article  PubMed  CAS  Google Scholar 

  30. Wei RL, Jung BC, Manzano W, Sehgal V, Klempner SJ, Lee SP, et al. Bone mineral density loss in thoracic and lumbar vertebrae following radiation for abdominal cancers. Radiother Oncol. 2016;118(3):430–6. https://doi.org/10.1016/j.radonc.2016.03.002.

    Article  PubMed  Google Scholar 

  31. Sahgal A, Bilsky M, Chang EL, Ma L, Yamada Y, Rhines LD, et al. Stereotactic body radiotherapy for spinal metastases: current status, with a focus on its application in the postoperative patient. J Neurosurg Spine. 2011;14(2):151–66. https://doi.org/10.3171/2010.9.spine091005.

    Article  PubMed  Google Scholar 

  32. Noël-Savina E, Descourt R. Osteoporotic vertebral compression fractures: a rare complication of radiotherapy in a patient with lung cancer. Clin Imaging. 2013;37(2):390–2. https://doi.org/10.1016/j.clinimag.2012.05.016.

    Article  PubMed  Google Scholar 

  33. Ragab Y, Emad Y, Gheita T, Mansoure M, Abou-Zeid A, Ferrari S, et al. Differentiation of osteoporotic and neoplastic vertebral fracturesby chemical shift in-phase and out-of phase MR imaging. Eur J Radiol. 2009;72(1):125–33. https://doi.org/10.1016/j.ejrad.2008.06.019.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Guglielmi.

Ethics declarations

Conflict of interest

Vincenzo Fusco, Rocchina Caivano, Salvatore Parisi, M. Troiano, Pietro Corsa, Arcangela Raguso, Tindara Munafò, and Maria A. Clemente each declare no potential conflicts of interest. Giuseppe Guglielmi is a section editor for Current Radiology Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Geriatrics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusco, V., Caivano, R., Parisi, S. et al. Insufficiency Fractures After Radiation Therapy: An Update. Curr Radiol Rep 6, 21 (2018). https://doi.org/10.1007/s40134-018-0280-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-018-0280-x

Keywords

Navigation