Imaging Parkinsonian Pathology in Substantia Nigra with MRI

Abstract

Purpose of Review

The substantia nigra pars compacta (SNc) and its projection to the striatum undergo profound degeneration in Parkinson’s disease (PD). Literature on imaging PD-related changes in the nigrostriatal system using iron-sensitive and diffusion-sensitive MRI contrasts has been contentious, with both negative and positive results reported in each contrast. These incompatible findings may be due to the inaccurate placement of regions of interest for the SNc.

Recent Findings

Histologically, SNc is characterized by the presence of melanized dopamine neurons, whereas the substantia nigra pars reticulata is characterized by high iron content. Despite this histology, previous studies have frequently relied upon iron-sensitive MRI contrast when segmenting the SNc. This is also problematic since recent work found iron-sensitive and neuromelanin-sensitive contrasts are largely non-overlapping in substantia nigra. Since neuromelanin-sensitive MRI contrast colocalizes with the melanized dopamine neurons of the SNc upon radiologic–histologic correlation, the use of neuromelanin-sensitive MRI will allow for accurate localization of SNc and better capture parkinsonian pathobiology than iron-sensitive MRI.

Summary

This article outlines iron-sensitive and diffusion-sensitive MRI contrasts, and provides an overview of neuromelanin-sensitive MRI techniques. The application of these techniques to image parkinsonian pathobiology in substantia nigra is then reviewed, with a focus on neuromelanin-sensitive imaging methods for the accurate and reproducible study of PD-related changes in SNc. These advances may help resolve current controversies surrounding MRI investigations of substantia nigra in PD and related disorders.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Guitart-Masip M, Huys QJ, Fuentemilla L, Dayan P, Duzel E, Dolan RJ. Go and no-go learning in reward and punishment: interactions between affect and effect. NeuroImage. 2012;62(1):154–66.

    PubMed  Article  Google Scholar 

  2. 2.

    Kimura K, Hikida T, Yawata S, Yamaguchi T, Nakanishi S. Pathway-specific engagement of ephrinA5-EphA4/EphA5 system of the substantia nigra pars reticulata in cocaine-induced responses. Proc Natl Acad Sci USA. 2011;108(24):9981–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Schiffer AM, Ahlheim C, Wurm MF, Schubotz RI. Surprised at all the entropy: hippocampal, caudate and midbrain contributions to learning from prediction errors. PLoS ONE. 2012;7(5):e36445.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Beckstead RM, Domesick VB, Nauta WJ. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res. 1979;175(2):191–217.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26(4):317–30.

    PubMed  Article  Google Scholar 

  6. 6.

    Atherton JF, Bevan MD. Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro. J Neurosci. 2005;25(36):8272–81.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Snyder AM, Connor JR. Iron, the substantia nigra and related neurological disorders. Biochim Biophys Acta. 2009;1790(7):606–14.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28 K) immunohistochemistry. Brain. 1999;122(Pt 8):1421–36.

    PubMed  Article  Google Scholar 

  9. 9.

    Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978;14(4):633–43.

    CAS  PubMed  Google Scholar 

  10. 10.

    Zecca L, Casella L, Albertini A, Bellei C, Zucca FA, Engelen M, et al. Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson’s disease. J Neurochem. 2008;106(4):1866–75.

    CAS  PubMed  Google Scholar 

  11. 11.

    Zucca FA, Segura-Aguilar J, Ferrari E, Munoz P, Paris I, Sulzer D, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2017;155:96–119.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Zecca L, Gallorini M, SchuÈnemann V, Trautwein AX, Gerlach M, Riederer P, et al. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem. 2001;76(6):1766–73.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, et al. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA. 2004;101(26):9843–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA. 2000;97(22):11869–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Fenichel GM, Bazelon M. Studies on neuromelanin. II. Melanin in the brainstems of infants and children. Neurology. 1968;18(8):817–20.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Cowen D. The melanoneurons of the human cerebellum (nucleus pigmentosus cerebellaris) and homologues in the monkey. J Neuropathol Exp Neurol. 1986;45(3):205–21.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Ma SY, Roytt M, Collan Y, Rinne JO. Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol. 1999;25(5):394–9.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Manaye KF, McIntire DD, Mann DM, German DC. Locus coeruleus cell loss in the aging human brain: a non-random process. J Comp Neurol. 1995;358(1):79–87.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Riederer P, Wuketich S. Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm. 1976;38(3–4):277–301.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Halliday GM, McRitchie DA, Cartwright H, Pamphlett R, Hely MA, Morris JG. Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewy body disease. J Clin Neurosci. 1996;3(1):52–60.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron. 2009;62(2):218–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;122(Pt 8):1437–48.

    PubMed  Article  Google Scholar 

  23. 23.

    Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301.

    PubMed  Article  Google Scholar 

  24. 24.

    Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature. 1988;334(6180):345–8.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain. 1991;114(Pt 4):1953–75.

    PubMed  Article  Google Scholar 

  26. 26.

    Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, et al. Increased nigral iron content in postmortem parkinsonian brain. Lancet. 1987;2(8569):1219–20.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Witoszynskyj S, Rauscher A, Reichenbach JR, Barth M. Phase unwrapping of MR images using Phi UN–a fast and robust region growing algorithm. Med Image Anal. 2009;13(2):257–68.

    PubMed  Article  Google Scholar 

  28. 28.

    Morris CM, Edwardson JA. Iron histochemistry of the substantia nigra in Parkinson’s disease. Neurodegeneration. 1994;3(4):277–82.

    CAS  PubMed  Google Scholar 

  29. 29.

    Zucca FA, Segura-Aguilar J, Ferrari E, Munoz P, Paris I, Sulzer D, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2015;155:96–119.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, et al. Free-water imaging in Parkinson’s disease and atypical parkinsonism. Brain. 2016;139(Pt 2):495–508.

    PubMed  Article  Google Scholar 

  31. 31.

    Urrutia PJ, Mena NP, Nunez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 2014;5:38.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Walsh S, Finn DP, Dowd E. Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson’s disease in the rat. Neuroscience. 2011;175:251–61.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Faucheux BA, Bonnet AM, Agid Y, Hirsch EC. Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet. 1999;353(9157):981–2.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B. Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm. 2012;119(1):59–71.

    PubMed  Article  Google Scholar 

  35. 35.

    Strafella AP, Bohnen NI, Perlmutter JS, Eidelberg D, Pavese N, Van Eimeren T, et al. Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers. Mov Disord. 2017;32(2):181–92.

    PubMed  Article  Google Scholar 

  36. 36.

    Walter U. Transcranial brain sonography findings in Parkinson’s disease: implications for pathogenesis, early diagnosis and therapy. Expert Rev Neurother. 2009;9(6):835–46.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Niehaus L, Boelmans K. Diagnosis of Parkinson’s disease–transcranial sonography in relation to MRI. Int Rev Neurobiol. 2010;90:63–79.

    PubMed  Article  Google Scholar 

  38. 38.

    Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, et al. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. NeuroReport. 2006;17(11):1215–8.

    PubMed  Article  Google Scholar 

  39. 39.

    •• Keren NI, Taheri S, Vazey EM, Morgan PS, Granholm AC, Aston-Jones GS, et al. Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. Neuroimage. 2015;113(1):235–45. This manuscript compares M-MRI hyperintense signal with histology and found neuromelanin containing neurons colocalize with hyperintense signal in NM-MRI images.

  40. 40.

    Kitao S, Matsusue E, Fujii S, Miyoshi F, Kaminou T, Kato S, et al. Correlation between pathology and neuromelanin MR imaging in Parkinson’s disease and dementia with Lewy bodies. Neuroradiology. 2013;55(8):947–53.

    PubMed  Article  Google Scholar 

  41. 41.

    Bolding MS, Reid MA, Avsar KB, Roberts RC, Gamlin PD, Gawne TJ, et al. Magnetic transfer contrast accurately localizes substantia nigra confirmed by histology. Biol Psychiatry. 2013;73(3):289–94.

    PubMed  Article  Google Scholar 

  42. 42.

    Dixon WT, Engels H, Castillo M, Sardashti M. Incidental magnetization transfer contrast in standard multislice imaging. Magn Reson Imaging. 1990;8(4):417–22.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Chen X, Huddleston DE, Langley J, Ahn S, Barnum CJ, Factor SA, et al. Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach. Magn Reson Imaging. 2014;32(10):1301–6.

    PubMed  Article  Google Scholar 

  44. 44.

    Schwarz ST, Rittman T, Gontu V, Morgan PS, Bajaj N, Auer DP. T1-Weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson’s disease. Mov Disord. 2011;26(9):1633–8.

    PubMed  Article  Google Scholar 

  45. 45.

    Trujillo P, Smith AK, Summers PE, Mainardi LM, Cerutti S, Smith SA, et al. High-resolution quantitative imaging of the substantia nigra. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5428–31.

    PubMed  Google Scholar 

  46. 46.

    Trujillo P, Summers PE, Ferrari E, Zucca FA, Sturini M, Mainardi LT, et al. Contrast mechanisms associated with neuromelanin-MRI. Magn Reson Med. 2017;78(5):1790–800.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Ogisu K, Kudo K, Sasaki M, Sakushima K, Yabe I, Sasaki H, et al. 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson’s disease. Neuroradiology. 2013;55(6):719–24.

    PubMed  Article  Google Scholar 

  48. 48.

    Nakane T, Nihashi T, Kawai H, Naganawa S. Visualization of neuromelanin in the Substantia nigra and locus ceruleus at 1.5T using a 3D-gradient echo sequence with magnetization transfer contrast. Magn Reson Med. 2008;7(4):205–10.

    Article  Google Scholar 

  49. 49.

    Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA. Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology. 1995;45(6):1138–43.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Haacke EM, Xu Y, Cheng Y-CN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52:612–8.

    PubMed  Article  Google Scholar 

  51. 51.

    de Rochefort L, Brown R, Prince MR, Wang Y. Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn Reson Med. 2008;60(4):1003–9.

    PubMed  Article  Google Scholar 

  52. 52.

    Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. NeuroImage. 2011;55(4):1645–56.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med. 2009;61(1):196–204.

    PubMed  Article  Google Scholar 

  54. 54.

    He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, et al. Region-specific disturbed iron distribution in early idiopathic Parkinson’s disease measured by quantitative susceptibility mapping. Hum Brain Mapp. 2015;36(11):4407–20.

    PubMed  Article  Google Scholar 

  55. 55.

    Langkammer C, Schweser F, Krebs N, Deistung A, Goessler W, Scheurer E, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage. 2012;62(3):1593–9.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Sun H, Walsh AJ, Lebel RM, Blevins G, Catz I, Lu JQ, et al. Validation of quantitative susceptibility mapping with Perls’ iron staining for subcortical gray matter. Neuroimage. 2015;105:486–92.

    PubMed  Article  Google Scholar 

  57. 57.

    Zheng W, Nichol H, Liu S, Cheng YC, Haacke EM. Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging. Neuroimage. 2013;78:68–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    House MJ, St Pierre TG, Kowdley KV, Montine T, Connor J, Beard J, et al. Correlation of proton transverse relaxation rates (R2) with iron concentrations in postmortem brain tissue from alzheimer’s disease patients. Magn Reson Med. 2007;57(1):172–80.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Deistung A, Schafer A, Schweser F, Biedermann U, Turner R, Reichenbach JR. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Neuroimage. 2013;65:299–314.

    PubMed  Article  Google Scholar 

  60. 60.

    Usunoff KG, Itzev DE, Ovtscharoff WA, Marani E. Neuromelanin in the human brain: a review and atlas of pigmented cells in the substantia nigra. Arch Physiol Biochem. 2002;110(4):257–369.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Langley J, Huddleston DE, Chen X, Sedlacik J, Zachariah N, Hu X. A multicontrast approach for comprehensive imaging of substantia nigra. Neuroimage. 2015;112:7–13.

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Gramsch C, Reuter I, Kraff O, Quick HH, Tanislav C, Roessler F, et al. Nigrosome 1 visibility at susceptibility weighted 7T MRI-A dependable diagnostic marker for Parkinson’s disease or merely an inconsistent, age-dependent imaging finding? PLoS ONE. 2017;12(10):e0185489.

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Blazejewska AI, Schwarz ST, Pitiot A, Stephenson MC, Lowe J, Bajaj N, et al. Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology. 2013;81(6):534–40.

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Massey LA, Miranda MA, Al-Helli O, Parkes HG, Thornton JS, So PW, et al. 9.4 T MR microscopy of the substantia nigra with pathological validation in controls and disease. Neuroimage Clin. 2017;13:154–63.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Ohtsuka C, Sasaki M, Konno K, Koide M, Kato K, Takahashi J, et al. Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging. Neurosci Lett. 2013;541:93–8.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Matsuura K, Maeda M, Tabei KI, Umino M, Kajikawa H, Satoh M, et al. A longitudinal study of neuromelanin-sensitive magnetic resonance imaging in Parkinson’s disease. Neurosci Lett. 2016;633:112–7.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Castellanos G, Fernandez-Seara MA, Lorenzo-Betancor O, Ortega-Cubero S, Puigvert M, Uranga J, et al. Automated Neuromelanin Imaging as a Diagnostic Biomarker for Parkinson’s disease. Mov Disord. 2015;30(7):945–52.

    PubMed  Article  Google Scholar 

  68. 68.

    Reimao S, Pita Lobo P, Neutel D, Correia Guedes L, Coelho M, Rosa MM, et al. Substantia nigra neuromelanin magnetic resonance imaging in de novo Parkinson’s disease patients. Eur J Neurol. 2015;22(3):540–6.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Kashihara K, Shinya T, Higaki F. Neuromelanin magnetic resonance imaging of nigral volume loss in patients with Parkinson’s disease. J Clin Neurosci. 2011;18(8):1093–6.

    PubMed  Article  Google Scholar 

  70. 70.

    Schwarz ST, Xing Y, Tomar P, Bajaj N, Auer DP. In vivo assessment of brainstem depigmentation in parkinson disease: potential as a severity marker for multicenter studies. Radiology. 2017;283(3):789–98.

    PubMed  Article  Google Scholar 

  71. 71.

    Isaias IU, Trujillo P, Summers P, Marotta G, Mainardi L, Pezzoli G, et al. Neuromelanin imaging and dopaminergic loss in Parkinson’s disease. Front Aging Neurosci. 2016;8:196.

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Reimao S, Pita Lobo P, Neutel D, Guedes LC, Coelho M, Rosa MM, et al. Substantia nigra neuromelanin-MR imaging differentiates essential tremor from Parkinson’s disease. Mov Disord. 2015;30(7):953–9.

    PubMed  Article  Google Scholar 

  73. 73.

    Kashihara K, Shinya T, Higaki F. Reduction of neuromelanin-positive nigral volume in patients with MSA, PSP and CBD. Intern Med. 2011;50(16):1683–7.

    PubMed  Article  Google Scholar 

  74. 74.

    Ohtsuka C, Sasaki M, Konno K, Kato K, Takahashi J, Yamashita F, et al. Differentiation of early-stage parkinsonisms using neuromelanin-sensitive magnetic resonance imaging. Parkinsonism Relat Disord. 2014;20(7):755–60.

    PubMed  Article  Google Scholar 

  75. 75.

    Miyoshi F, Ogawa T, Kitao SI, Kitayama M, Shinohara Y, Takasugi M, et al. Evaluation of Parkinson disease and Alzheimer disease with the use of neuromelanin MR imaging and (123)I-metaiodobenzylguanidine scintigraphy. AJNR. 2013;34(11):2113–8.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Wypijewska A, Galazka-Friedman J, Bauminger ER, Wszolek ZK, Schweitzer KJ, Dickson DW, et al. Iron and reactive oxygen species activity in parkinsonian substantia nigra. Parkinsonism Relat Disord. 2010;16(5):329–33.

    PubMed  Article  Google Scholar 

  77. 77.

    Baudrexel S, Nurnberger L, Rub U, Seifried C, Klein JC, Deller T, et al. Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson’s disease. Neuroimage. 2010;51(2):512–20.

    PubMed  Article  Google Scholar 

  78. 78.

    Du G, Lewis MM, Styner M, Shaffer ML, Sen S, Yang QX, et al. Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson’s disease. Mov Disord. 2011;26(9):1627–32.

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Graham JM, Paley MN, Grunewald RA, Hoggard N, Griffiths PD. Brain iron deposition in Parkinson’s disease imaged using the PRIME magnetic resonance sequence. Brain. 2000;123(Pt 12):2423–31.

    PubMed  Article  Google Scholar 

  80. 80.

    Kosta P, Argyropoulou MI, Markoula S, Konitsiotis S. MRI evaluation of the basal ganglia size and iron content in patients with Parkinson’s disease. J Neurol. 2006;253(1):26–32.

    PubMed  Article  Google Scholar 

  81. 81.

    Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008;70(16 Pt 2):1411–7.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Peran P, Cherubini A, Assogna F, Piras F, Quattrocchi C, Peppe A, et al. Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain. 2010;133(11):3423–33.

    PubMed  Article  Google Scholar 

  83. 83.

    Wallis LI, Paley MN, Graham JM, Grunewald RA, Wignall EL, Joy HM, et al. MRI assessment of basal ganglia iron deposition in Parkinson’s disease. J Magn Reson Imaging. 2008;28(5):1061–7.

    PubMed  Article  Google Scholar 

  84. 84.

    Aquino D, Contarino V, Albanese A, Minati L, Farina L, Grisoli M, et al. Substantia nigra in Parkinson’s disease: a multimodal MRI comparison between early and advanced stages of the disease. Neurol Sci. 2014;35(5):753–8.

    PubMed  Article  Google Scholar 

  85. 85.

    Focke NK, Helms G, Pantel PM, Scheewe S, Knauth M, Bachmann CG, et al. Differentiation of typical and atypical Parkinson syndromes by quantitative MR imaging. AJNR. 2011;32(11):2087–92.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Mondino F, Filippi P, Magliola U, Duca S. Magnetic resonance relaxometry in Parkinson’s disease. Neurol Sci. 2002;23(Suppl 2):S87–8.

    PubMed  Article  Google Scholar 

  87. 87.

    Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leonardi M, et al. T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology. 1999;211(2):489–95.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA. Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med. 1994;32(3):335–41.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Gupta D, Saini J, Kesavadas C, Sarma PS, Kishore A. Utility of susceptibility-weighted MRI in differentiating Parkinson’s disease and atypical parkinsonism. Neuroradiology. 2010;52(12):1087–94.

    PubMed  Article  Google Scholar 

  90. 90.

    Dashtipour K, Liu M, Kani C, Dalaie P, Obenaus A, Simmons D, et al. Iron Accumulation Is Not Homogenous among Patients with Parkinson’s disease. Parkinson’s Dis. 2015;2015:324843.

    Google Scholar 

  91. 91.

    Haller S, Badoud S, Nguyen D, Barnaure I, Montandon ML, Lovblad KO, et al. Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): initial results. Eur Radiol. 2013;23(1):12–9.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Lotfipour AK, Wharton S, Schwarz ST, Gontu V, Schafer A, Peters AM, et al. High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson’s disease. J Magn Reson Imaging. 2012;35(1):48–55.

    PubMed  Article  Google Scholar 

  93. 93.

    Lim IA, Faria AV, Li X, Hsu JT, Airan RD, Mori S, et al. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures. NeuroImage. 2013;82:449–69.

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Lim IA, Li X, Jones CK, Farrell JA, Vikram DS, van Zijl PC. Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR. NeuroImage. 2014;86:265–79.

    PubMed  Article  Google Scholar 

  95. 95.

    Ryvlin P, Broussolle E, Piollet H, Viallet F, Khalfallah Y, Chazot G. Magnetic resonance imaging evidence of decreased putamenal iron content in idiopathic Parkinson’s disease. Arch Neurol. 1995;52(6):583–8.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Ulla M, Bonny JM, Ouchchane L, Rieu I, Claise B, Durif F. Is R2* a new MRI biomarker for the progression of Parkinson’s disease? A longitudinal follow-up. PLoS ONE. 2013;8(3):e57904.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Langley J, Huddleston DE, Sedlacik J, Boelmans K, Hu XP. Parkinson’s disease-related increase of T2*-weighted hypointensity in substantia nigra pars compacta. Mov Disord. 2017;32(3):441–9.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    • Huddleston DE, Langley J, Sedlacik J, Boelmans K, Factor SA, Hu XP. In vivo detection of lateral-ventral tier nigral degeneration in Parkinson’s disease. Hum Brain Mapp. 2017;38(5):2627–34. Histology findings of the substantia nigra in Parkinson’s disease show selective loss of melanized dopamine neurons in the lateral-ventral SNc. This work provides the first direct imaging evidence showing a reduction of neuromelanin-sensitive signal in lateral-ventral tier of substantia nigra.

  99. 99.

    German DC, Manaye K, Smith WK, Woodward DJ, Saper CB. Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol. 1989;26(4):507–14.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Hassler R. Zur Pathologie der Paralysis agitains und des postenzephalitischen Parkinsonismus. J Psychol Neurol. 1938;48:387–476.

    Google Scholar 

  101. 101.

    Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP. The ‘swallow tail’ appearance of the healthy nigrosome—a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS ONE. 2014;9(4):e93814.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102.

    Fu KA, Nathan R, Dinov ID, Li J, Toga AW. T2-imaging changes in the nigrosome-1 relate to clinical measures of Parkinson’s disease. Front Neurol. 2016;7:174.

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Mahlknecht P, Krismer F, Poewe W, Seppi K. Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson’s disease. Mov Disord. 2017;32(4):619–23.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Meijer FJ, Steens SC, van Rumund A, van Cappellen, van Walsum AM, Kusters B, Esselink RA, et al. Nigrosome-1 on susceptibility weighted imaging to differentiate Parkinson’s disease from atypical parkinsonism: an in vivo and ex vivo pilot study. Pol J Radiol. 2016;81:363–9.

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Schmidt MA, Engelhorn T, Marxreiter F, Winkler J, Lang S, Kloska S, et al. Ultra high-field SWI of the substantia nigra at 7T: reliability and consistency of the swallow-tail sign. BMC Neurol. 2017;17(1):194.

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Reimao S, Ferreira S, Nunes RG, Pita Lobo P, Neutel D, Abreu D, et al. Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early-stage Parkinson’s disease. Eur J Neurol. 2016;23(2):368–74.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Blain CR, Barker GJ, Jarosz JM, Coyle NA, Landau S, Brown RG, et al. Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology. 2006;67(12):2199–205.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Schocke MF, Seppi K, Esterhammer R, Kremser C, Jaschke W, Poewe W, et al. Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology. 2002;58(4):575–80.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Langley J, Huddleston DE, Merritt M, Chen X, McMurray R, Silver M, et al. Diffusion tensor imaging of the substantia nigra in Parkinson’s disease revisited. Hum Brain Mapp. 2016;37(7):2547–56.

    PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Chan LL, Rumpel H, Yap K, Lee E, Loo HV, Ho GL, et al. Case control study of diffusion tensor imaging in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(12):1383–6.

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Vaillancourt DE, Spraker MB, Prodoehl J, Abraham I, Corcos DM, Zhou XJ, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology. 2009;72(16):1378–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Wang JJ, Lin WY, Lu CS, Weng YH, Ng SH, Wang CH, et al. Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology. 2011;261(1):210–7.

    PubMed  Article  Google Scholar 

  113. 113.

    Menke RA, Scholz J, Miller KL, Deoni S, Jbabdi S, Matthews PM, et al. MRI characteristics of the substantia nigra in Parkinson’s disease: a combined quantitative T1 and DTI study. NeuroImage. 2009;47(2):435–41.

    PubMed  Article  Google Scholar 

  114. 114.

    Schwarz ST, Abaei M, Gontu V, Morgan PS, Bajaj N, Auer DP. Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: a region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. Neuroimage Clin. 2013;3:481–8.

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Ziegler E, Rouillard M, Andre E, Coolen T, Stender J, Balteau E, et al. Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson’s disease. Neuroimage. 2014;99:498–508.

    PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Fujiwara S, Uhrig L, Amadon A, Jarraya B, Le Bihan D. Quantification of iron in the non-human primate brain with diffusion-weighted magnetic resonance imaging. Neuroimage. 2014;102(2):789–97.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Kamagata K, Hatano T, Okuzumi A, Motoi Y, Abe O, Shimoji K, et al. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease. Eur Radiol. 2016;26(8):2567–77.

    PubMed  Article  Google Scholar 

  118. 118.

    Ofori E, Pasternak O, Planetta PJ, Burciu R, Snyder A, Febo M, et al. Increased free water in the substantia nigra of Parkinson’s disease: a single-site and multi-site study. Neurobiol Aging. 2015;36(2):1097–104.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Theisen F, Leda R, Pozorski V, Oh JM, Adluru N, Wong R, et al. Evaluation of striatonigral connectivity using probabilistic tractography in Parkinson’s disease. Neuroimage Clin. 2017;16:557–63.

    PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Kim M, Park H. Structural connectivity profile of scans without evidence of dopaminergic deficit (SWEDD) patients compared to normal controls and Parkinson’s disease patients. Springerplus. 2016;5(1):1421.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121.

    Yoshikawa K, Nakata Y, Yamada K, Nakagawa M. Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J Neurol Neurosurg Psychiatry. 2004;75(3):481–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.

    PubMed  Article  Google Scholar 

  123. 123.

    Zhang Y, Wu IW, Buckley S, Coffey CS, Foster E, Mendick S, et al. Diffusion tensor imaging of the nigrostriatal fibers in Parkinson’s disease. Mov Disord. 2015;30(9):1229–36.

    PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Menke RA, Jbabdi S, Miller KL, Matthews PM, Zarei M. Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson’s disease. NeuroImage. 2010;52(4):1175–80.

    PubMed  Article  Google Scholar 

  125. 125.

    Marras C, Rochon P, Lang AE. Predicting motor decline and disability in Parkinson disease: a systematic review. Arch Neurol. 2002;59(11):1724–8.

    PubMed  Article  Google Scholar 

  126. 126.

    Thenganatt MA, Jankovic J. Parkinson disease subtypes. JAMA Neurol. 2014;71(4):499–504.

    PubMed  Article  Google Scholar 

  127. 127.

    von Coelln R, Shulman LM. Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease. Curr Opin Neurol. 2016;29(6):727–34.

    Article  CAS  Google Scholar 

  128. 128.

    Espay AJ, Schwarzschild MA, Tanner CM, Fernandez HH, Simon DK, Leverenz JB, et al. Biomarker-driven phenotyping in Parkinson’s disease: a translational missing link in disease-modifying clinical trials. Mov Disord. 2017;32(3):319–24.

    PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Schillaci O, Chiaravalloti A, Pierantozzi M, Di Pietro B, Koch G, Bruni C, et al. Different patterns of nigrostriatal degeneration in tremor type versus the akinetic-rigid and mixed types of Parkinson’s disease at the early stages: molecular imaging with 123I-FP-CIT SPECT. Int J Mol Med. 2011;28(5):881–6.

    CAS  PubMed  Google Scholar 

  130. 130.

    Helmich RC, Janssen MJ, Oyen WJ, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 2011;69(2):269–81.

    PubMed  Article  Google Scholar 

  131. 131.

    Lewis MM, Du G, Sen S, Kawaguchi A, Truong Y, Lee S, et al. Differential involvement of striato- and cerebello-thalamo-cortical pathways in tremor- and akinetic/rigid-predominant Parkinson’s disease. Neuroscience. 2011;177:230–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Ni Z, Pinto AD, Lang AE, Chen R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol. 2010;68(6):816–24.

    PubMed  Article  Google Scholar 

  133. 133.

    He N, Huang P, Ling H, Langley J, Liu C, Ding B, et al. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson’s disease. NMR Biomed. 2017. https://doi.org/10.1002/nbm.3554.

    Google Scholar 

  134. 134.

    Galazka-Friedman J, Bauminger ER, Friedman A, Barcikowska M, Hechel D, Nowik I. Iron in parkinsonian and control substantia nigra—a Mossbauer spectroscopy study. Mov Disord. 1996;11(1):8–16.

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Uitti RJ, Rajput AH, Rozdilsky B, Bickis M, Wollin T, Yuen WK. Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci. 1989;16(3):310–4.

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K. Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology. 1995;45(1):182–4.

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Guiney SJ, Adlard PA, Bush AI, Finkelstein DI, Ayton S. Ferroptosis and cell death mechanisms in Parkinson’s disease. Neurochem Int. 2017;104:34–48.

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.

    PubMed  Article  Google Scholar 

  139. 139.

    Zarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol. 2003;60(3):337–41.

    PubMed  Article  Google Scholar 

  140. 140.

    Benarroch EE. The locus ceruleus norepinephrine system: functional organization and potential clinical significance. Neurology. 2009;73(20):1699–704.

    PubMed  Article  Google Scholar 

  141. 141.

    Burke RE, Dauer WT, Vonsattel JPG. A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol. 2008;64(5):485–91.

    PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Jellinger K. A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol. 2008;116(1):1–16.

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Langley J, Huddleston DE, Liu CJ, Hu X. Reproducibility of locus coeruleus and substantia nigra imaging with neuromelanin sensitive MRI. MAGMA. 2017;30(2):121–5.

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Kaasinen V, Vahlberg T. Striatal dopamine in Parkinson disease: a meta-analysis of imaging studies. Ann Neurol. 2017;82(6):873–82.

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Kuya K, Ogawa T, Shinohara Y, Ishibashi M, Fujii S, Mukuda N, et al. Evaluation of Parkinson’s disease by neuromelanin-sensitive magnetic resonance imaging and (123)I-FP-CIT SPECT. Acta Radiol. 2017. https://doi.org/10.1177/0284185117722812.

    PubMed  Google Scholar 

Download references

Acknowledgements

Xiaoping Hu and Daniel E. Huddleston receive support from the Michael J. Fox Foundation (MJF 10854). Petr Dusek is supported by Czech Science Foundation (grant nr. 16-07879S) and Czech Ministry of Health (grant nr. 15-25602A). Bruce Crosson receives support from the Rehabilitation Research & Development Service of the Department of Veterans Affairs Office of Research and Development (award nr. B6364-L).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoping P. Hu.

Ethics declarations

Conflict of interest

Daniel E. Huddleston, Jason Langley, Petr Dusek, Naying He, Carlos C. Faraco, Bruce Crosson, Stewart Factor, and Xiaoping Hu each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Neuroimaging.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huddleston, D.E., Langley, J., Dusek, P. et al. Imaging Parkinsonian Pathology in Substantia Nigra with MRI. Curr Radiol Rep 6, 15 (2018). https://doi.org/10.1007/s40134-018-0272-x

Download citation

Keywords

  • Neuromelanin
  • Substantia nigra
  • Parkinson’s disease
  • Neuromelanin-sensitive MRI
  • Iron