Skip to main content
Log in

Imaging Measurable (Minimal) Residual Disease in Multiple Myeloma

  • Oncology (S Delorme, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The availability of effective anti-myeloma therapies has led to the concept of new response categories that define responses deeper than conventionally defined complete response (CR). In cases of CR, deepest response, defined as minimal residual disease (MRD)-negative status, has been independently associated with prolonged progression-free survival and overall survival. In spite of an unmeasurable MRD, most patients eventually relapse. Because current methodology using flow cytometry or gene sequencing focuses on sampling MRD primarily from bone marrow, the low-level disease that may be present at other places in the skeleton and/or at extra-skeletal sites could be ultimately responsible for clinical relapse. Relevantly, sensitive imaging has the potential to complement MRD assessment by providing a complete picture of the entire bone/bone marrow compartment and extramedullary sites.

Recent Findings

The International Myeloma Working Group (IMWG) has come up with new response categories of MRD negativity with or without the absence of disease on imaging. Multiple studies support the notion that FDG-PET has higher specificity over MRI as MRD assessment adjunct because the detection of FDG-PET-positive lesions has prognostic value in patients with multiple myeloma at diagnosis and at time of relapse. MR techniques, including functional variations, and new PET tracers add additional information for MRD evaluation.

Summary

We provide an overview discussing the shortcomings and advantages of various imaging strategies that can complement the current MRD methodology. We need more trials investigating the new PET tracers and functional MRI as MRD assessment tools. In order for sensitive imaging to be validated for MRD evaluation and response-adapted treatment algorithms, we recommend that prospective clinical trials incorporate the imaging-based definitions of newly defined IMWG response and MRD criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. van de Velde HJ, Liu X, Chen G, Cakana A, Deraedt W, Bayssas M. Complete response correlates with long-term survival and progression-free survival in high-dose therapy in multiple myeloma. Haematologica. 2007;92(10):1399–406.

    Article  PubMed  Google Scholar 

  2. Lahuerta JJ, Mateos MV, Martinez-Lopez J, Rosinol L, Sureda A, de la Rubia J, et al. Influence of pre- and post-transplantation responses on outcome of patients with multiple myeloma: sequential improvement of response and achievement of complete response are associated with longer survival. J Clin Oncol. 2008;26(35):5775–82.

    Article  PubMed  Google Scholar 

  3. Gay F, Larocca A, Wijermans P, Cavallo F, Rossi D, Schaafsma R, et al. Complete response correlates with long-term progression-free and overall survival in elderly myeloma treated with novel agents: analysis of 1175 patients. Blood. 2011;117(11):3025–31.

    Article  CAS  PubMed  Google Scholar 

  4. Usmani SZ, Crowley J, Hoering A, Mitchell A, Waheed S, Nair B, et al. Improvement in long-term outcomes with successive total therapy trials for multiple myeloma: are patients now being cured? Leukemia. 2013;27(1):226–32.

    Article  CAS  PubMed  Google Scholar 

  5. Palumbo A, Bringhen S, Larocca A, Rossi D, Di Raimondo F, Magarotto V, et al. Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: updated follow-up and improved survival. J Clin Oncol. 2014;32(7):634–40.

    Article  CAS  PubMed  Google Scholar 

  6. Nooka AK, Kaufman JL, Muppidi S, Langston A, Heffner LT, Gleason C, et al. Consolidation and maintenance therapy with lenalidomide, bortezomib and dexamethasone (RVD) in high-risk myeloma patients. Leukemia. 2014;28(3):690–3.

    Article  CAS  PubMed  Google Scholar 

  7. Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Spicka I, Oriol A, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52.

    Article  PubMed  Google Scholar 

  8. Rajkumar SV, Harousseau JL, Durie B, Anderson KC, Dimopoulos M, Kyle R, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011;117(18):4691–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–46. Consensus 2016 IMWG guidelines defining new response categories and endpoints of MRD negativity based on criteria without and with the use of imaging.

  10. • Paiva B, van Dongen JJ, Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood. 2015;125(20):3059–68. Provides summary of important studies from last two decades evaluating the prognostic role of MRD in multiple myeloma. Also addresses current controversies of MRD assessment, and provides recommendations for future work.

  11. Zamagni E, Nanni C, Mancuso K, Tacchetti P, Pezzi A, Pantani L, et al. PET/CT improves the definition of complete response and allows to detect otherwise unidentifiable skeletal progression in multiple myeloma. Clin Cancer Res. 2015;21(19):4384–90.

    Article  CAS  PubMed  Google Scholar 

  12. Hillengass J, Landgren O. Challenges and opportunities of novel imaging techniques in monoclonal plasma cell disorders: imaging “early myeloma”. Leuk Lymphoma. 2013;54(7):1355–63.

    Article  PubMed  Google Scholar 

  13. Hillengass J, Ayyaz S, Kilk K, Weber MA, Hielscher T, Shah R, et al. Changes in magnetic resonance imaging before and after autologous stem cell transplantation correlate with response and survival in multiple myeloma. Haematologica. 2012;97(11):1757–60.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.

    Article  PubMed  Google Scholar 

  15. • Dimopoulos MA, Hillengass J, Usmani S, Zamagni E, Lentzsch S, Davies FE, et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol. 2015;33(6): 657–64. Consensus document on role of MRI based on data published through March 2014provides technical requirements for use of MRI in multiple myeloma, scanning parameters for bone marrow assessment, and summarized statements for use in appropriate clinical settings and patient populations.

  16. Rubini G, Niccoli-Asabella A, Ferrari C, Racanelli V, Maggialetti N, Dammacco F. Myeloma bone and extra-medullary disease: Role of PET/CT and other whole-body imaging techniques. Crit Rev Oncol Hematol. 2016;101:169–83.

    Article  PubMed  Google Scholar 

  17. Fonti R, Salvatore B, Quarantelli M, Sirignano C, Segreto S, Petruzziello F, et al. 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med. 2008;49(2):195–200.

    Article  PubMed  Google Scholar 

  18. Healy CF, Murray JG, Eustace SJ, Madewell J, O’Gorman PJ, O’Sullivan P. Multiple myeloma: a review of imaging features and radiological techniques. Bone Marrow Res. 2011;2011:583439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zamagni E, Nanni C, Patriarca F, Englaro E, Castellucci P, Geatti O, et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica. 2007;92(1):50–5.

    Article  PubMed  Google Scholar 

  20. Bauerle T, Hillengass J, Fechtner K, Zechmann CM, Grenacher L, Moehler TM, et al. Multiple myeloma and monoclonal gammopathy of undetermined significance: importance of whole-body versus spinal MR imaging. Radiology. 2009;252(2):477–85.

    Article  PubMed  Google Scholar 

  21. Zamagni E, Cavo M. The role of imaging techniques in the management of multiple myeloma. Br J Haematol. 2012;159(5):499–513.

    PubMed  Google Scholar 

  22. Moulopoulos LA, Dimopoulos MA, Alexanian R, Leeds NE, Libshitz HI. Multiple myeloma: MR patterns of response to treatment. Radiology. 1994;193(2):441–6.

    Article  CAS  PubMed  Google Scholar 

  23. Bannas P, Hentschel HB, Bley TA, Treszl A, Eulenburg C, Derlin T, et al. Diagnostic performance of whole-body MRI for the detection of persistent or relapsing disease in multiple myeloma after stem cell transplantation. Eur Radiol. 2012;22(9):2007–12.

    Article  PubMed  Google Scholar 

  24. Walker R, Barlogie B, Haessler J, Tricot G, Anaissie E, Shaughnessy JD Jr, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol. 2007;25(9):1121–8.

    Article  PubMed  Google Scholar 

  25. Derlin T, Peldschus K, Munster S, Bannas P, Herrmann J, Stubig T, et al. Comparative diagnostic performance of (1)(8)F-FDG PET/CT versus whole-body MRI for determination of remission status in multiple myeloma after stem cell transplantation. Eur Radiol. 2013;23(2):570–8.

    Article  PubMed  Google Scholar 

  26. Hillengass J, Ritsch J, Merz M, Wagner B, Kunz C, Hielscher T, et al. Increased microcirculation detected by dynamic contrast-enhanced magnetic resonance imaging is of prognostic significance in asymptomatic myeloma. Br J Haematol. 2016;174(1):127–35.

    Article  PubMed  Google Scholar 

  27. Hillengass J, Wasser K, Delorme S, Kiessling F, Zechmann C, Benner A, et al. Lumbar bone marrow microcirculation measurements from dynamic contrast-enhanced magnetic resonance imaging is a predictor of event-free survival in progressive multiple myeloma. Clin Cancer Res. 2007;13(2 Pt 1):475–81.

    Article  PubMed  Google Scholar 

  28. Bhutani M, Turkbey B, Tan E, Kemp TJ, Pinto LA, Berg AR, et al. Bone marrow angiogenesis in myeloma and its precursor disease: a prospective clinical trial. Leukemia. 2014;28(2):413–6.

    Article  CAS  PubMed  Google Scholar 

  29. Dutoit JC, Vanderkerken MA, Verstraete KL. Value of whole body MRI and dynamic contrast enhanced MRI in the diagnosis, follow-up and evaluation of disease activity and extent in multiple myeloma. Eur J Radiol. 2013;82(9):1444–52.

    Article  PubMed  Google Scholar 

  30. Merz M, Ritsch J, Kunz C, Wagner B, Sauer S, Hose D, et al. Dynamic contrast-enhanced magnetic resonance imaging for assessment of antiangiogenic treatment effects in multiple myeloma. Clin Cancer Res. 2015;21(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  31. Messiou C, Giles S, Collins DJ, West S, Davies FE, Morgan GJ, et al. Assessing response of myeloma bone disease with diffusion-weighted MRI. Br J Radiol. 2012;85(1020):e1198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giles SL, Messiou C, Collins DJ, Morgan VA, Simpkin CJ, West S, et al. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology. 2014;271(3):785–94.

    Article  PubMed  Google Scholar 

  33. Hillengass J, Bauerle T, Bartl R, Andrulis M, McClanahan F, Laun FB, et al. Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol. 2011;153(6):721–8.

    Article  PubMed  Google Scholar 

  34. Horger M, Weisel K, Horger W, Mroue A, Fenchel M, Lichy M. Whole-body diffusion-weighted MRI with apparent diffusion coefficient mapping for early response monitoring in multiple myeloma: preliminary results. AJR Am J Roentgenol. 2011;196(6):W790–5.

    Article  PubMed  Google Scholar 

  35. Schirrmeister H, Bommer M, Buck AK, Muller S, Messer P, Bunjes D, et al. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29(3):361–6.

    Article  CAS  PubMed  Google Scholar 

  36. Bartel TB, Haessler J, Brown TL, Shaughnessy JD Jr, van Rhee F, Anaissie E, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114(10):2068–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shortt CP, Gleeson TG, Breen KA, McHugh J, O’Connell MJ, O’Gorman PJ, et al. Whole-body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol. 2009;192(4):980–6.

    Article  PubMed  Google Scholar 

  38. Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118(23):5989–95.

    Article  CAS  PubMed  Google Scholar 

  39. Usmani SZ, Mitchell A, Waheed S, Crowley J, Hoering A, Petty N, et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood. 2013;121(10):1819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barlogie B, Anaissie E, van Rhee F, Haessler J, Hollmig K, Pineda-Roman M, et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol. 2007;138(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  41. Nanni C, Zamagni E, Celli M, Caroli P, Ambrosini V, Tacchetti P, et al. The value of 18F-FDG PET/CT after autologous stem cell transplantation (ASCT) in patients affected by multiple myeloma (MM): experience with 77 patients. Clin Nucl Med. 2013;38(2):e74–9.

    Article  PubMed  Google Scholar 

  42. Fonti R, Larobina M, Del Vecchio S, De Luca S, Fabbricini R, Catalano L, et al. Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma. J Nucl Med. 2012;53(12):1829–35.

    Article  CAS  PubMed  Google Scholar 

  43. Luckerath K, Lapa C, Albert C, Herrmann K, Jorg G, Samnick S, et al. 11C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma. Oncotarget. 2015;6(10):8418–29.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lapa C, Knop S, Schreder M, Rudelius M, Knott M, Jorg G, et al. (11)C-Methionine-PET in multiple myeloma: correlation with clinical parameters and bone marrow involvement. Theranostics. 2016;6(2):254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin C, Ho CL, Ng SH, Wang PN, Huang Y, Lin YC, et al. (11)C-acetate as a new biomarker for PET/CT in patients with multiple myeloma: initial staging and postinduction response assessment. Eur J Nucl Med Mol Imaging. 2014;41(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  46. Ho CL, Chen S, Leung YL, Cheng T, Wong KN, Cheung SK, et al. 11C-acetate PET/CT for metabolic characterization of multiple myeloma: a comparative study with 18F-FDG PET/CT. J Nucl Med. 2014;55(5):749–52.

    Article  CAS  PubMed  Google Scholar 

  47. Nanni C, Zamagni E, Cavo M, Rubello D, Tacchetti P, Pettinato C, et al. 11C-choline versus 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol. 2007;5:68.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Philipp-Abbrederis K, Herrmann K, Knop S, Schottelius M, Eiber M, Luckerath K, et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med. 2015;7(4):477–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Green DJ, Orgun NN, Jones JC, Hylarides MD, Pagel JM, Hamlin DK, et al. A preclinical model of CD38-pretargeted radioimmunotherapy for plasma cell malignancies. Cancer Res. 2014;74(4):1179–89.

    Article  CAS  PubMed  Google Scholar 

  50. Nanni C, Zamagni E, Versari A, Chauvie S, Bianchi A, Rensi M, et al. Image interpretation criteria for FDG PET/CT in multiple myeloma: a new proposal from an Italian expert panel. IMPeTUs (Italian Myeloma criteria for PET USe). Eur J Nucl Med Mol Imaging. 2016;43(3):414–21.

    Article  CAS  PubMed  Google Scholar 

  51. Sachpekidis C, Hillengass J, Goldschmidt H, Mosebach J, Pan L, Schlemmer HP, et al. Comparison of (18)F-FDG PET/CT and PET/MRI in patients with multiple myeloma. Am J Nucl Med Mol Imaging. 2015;5(5):469–78.

    PubMed  PubMed Central  Google Scholar 

  52. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50(4):520–6.

    Article  PubMed  Google Scholar 

  53. Aznar MC, Sersar R, Saabye J, Ladefoged CN, Andersen FL, Rasmussen JH, et al. Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging. Eur J Radiol. 2014;83(7):1177–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Drs. Robert R. Lopez and Nirav P. Shah from Department of Radiology, Morehead Imaging Center, Carolinas HealthCare System for providing images for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola Landgren.

Ethics declarations

Conflict of Interest

Manisha Bhutani, Saad Z. Usmani, Alankrita Taneja, and Ola Landgren each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Oncology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhutani, M., Usmani, S.Z., Taneja, A. et al. Imaging Measurable (Minimal) Residual Disease in Multiple Myeloma. Curr Radiol Rep 4, 64 (2016). https://doi.org/10.1007/s40134-016-0192-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-016-0192-6

Keywords

Navigation