Skip to main content

Advertisement

Log in

Hybrid PET/MR: Updated Clinical Use and Potential Applications

  • PET/CT Imaging (R Morgado, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Simultaneous positron emission tomography/magnetic resonance was released few years ago and there is a (non-official) perspective of almost 100 scanners worldwide being installed until 2016. Despite the enormous marketing success for such an expensive and fine hybrid imaging tool, PET/MR is still seen primarily as a research tool. Currently this clinical validation process is more than necessary to justify the additional expenses in a world with increasing difficulties regarding health system reimbursement.

Recent Findings

The current PET/MR feasibility has been demonstrated with the published data so far in almost every body region, with great potential applications. The main fields of research in PET/MR are oncologic and neurologic, basically for two reasons: (1) because almost 90 % of PET/CT studies come from oncology; (2) and also because of the recent development of new medications and treatments for dementia, making PET/MR an important character in this new scenario. Inflammation has become the newest potential application, and will also be discussed further on.

Summary

In this article such potential clinical PET/MR applications are compiled and updated and will be thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. de Galiza Barbosa F, Delso G, Ter Voert EE, et al. Multi-technique hybrid imaging in PET/CT and PET/MR: what does the future hold? Clin Radiol. 2016;71(7):660–72.

    Article  Google Scholar 

  2. de Barbosa FG, von Schulthess G, Veit-Haibach P. Workflow in simultaneous PET/MRI. Semin Nucl Med. 2015;45(4):332–44.

    Article  Google Scholar 

  3. Park JT, Roh JL, Kim JS, et al. 18F FDG PET/CT versus CT/MR imaging and the prognostic value of contralateral neck metastases in patients with head and neck squamous cell carcinoma. Radiology. 2016;279(2):481–91.

    Article  PubMed  Google Scholar 

  4. Varoquaux A, Rager O, Dulguerov P, et al. Diffusion-weighted and PET/MR Imaging after radiation therapy for malignant head and neck tumors. Radiographics. 2015;35(5):1502–27.

    Article  PubMed  Google Scholar 

  5. •• Queiroz MA, Huellner MW. PET/MR in cancers of the head and neck. Semin Nucl Med. 2015;45(3):248–65. Complete and comprehensive review of PET/MR applications in cancers of the head and neck.

  6. • Huang SH, Chien CY, Lin WC, et al. A comparative study of fused FDG PET/MRI, PET/CT, MRI, and CT imaging for assessing surrounding tissue invasion of advanced buccal squamous cell carcinoma. Clin Nucl Med. 2011;36(7):518–25. Comparison of current most important imaging methods for head and neck cancers.

  7. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  Google Scholar 

  8. Nagarajah J, Jentzen W, Hartung V, et al. Diagnosis and dosimetry in differentiated thyroid carcinoma using 124I PET: comparison of PET/MRI vs PET/CT of the neck. Eur J Nucl Med Mol Imaging. 2011;38(10):1862–8.

    Article  CAS  PubMed  Google Scholar 

  9. Plathow C, Aschoff P, Lichy MP, et al. Positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced nonsmall cell lung cancer—initial results. Investig Radiol. 2008;43:290–7.

    Article  Google Scholar 

  10. • Kim YN, Yi CA, Lee KS, et al. A proposal for combined MRI and PET/CT interpretation criteria for preoperative nodal staging in non-small-cell lung cancer. Eur Radiol. 2012;22(7):1537–15. Interesting approach on nodal staging for lung cancer, proposing combined criteria which may facilitate surgical planning.

  11. Heusch P, Köhler J, Wittsack HJ, et al. Hybrid [(18)F]-FDG PET/MRI including non-Gaussian diffusion-weighted imaging (DWI): preliminary results in nonsmall cell lung cancer (NSCLC). Eur J Radiol. 2013;82:2055–60.

    Article  PubMed  Google Scholar 

  12. • Schwenzer NF, Schraml C, Müller M, et al. Pulmonary lesion assessment: comparison of whole-body hybrid MR/PET and PET/CT imaging-pilot study. Radiology. 2012; 264:551–8. One of the first studies addressing the major differences between PET/MR and PET/CT on pulmonary lesion assessment.

  13. •• Huellner MW, de Galiza Barbosa F, Husmann L, et al. TNM staging of non-small cell lung cancer: comparison of PET/MR and PET/CT. J Nucl Med. 2016;57(1):21–6. Recent study which evaluates lung cancer staging with PET/CT and PET/MR and portraits potential shortcomings of PET/MR systems.

  14. Mulkern R, Haker S, Mamata H, et al. Lung parenchymal signal intensity in MRI: a technical review with educational aspirations regarding reversible versus irreversible transverse relaxation effects in common pulse sequences. Concepts Magn Reson. 2014;43A(2):29–53.

    Article  CAS  Google Scholar 

  15. Buchbender C, Heusner TA, Lauenstein TC, et al. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med. 2012;53(8):1244–52.

    Article  PubMed  Google Scholar 

  16. Herrmann K, Queiroz M, Huellner MW, et al. Diagnostic performance of FDG-PET/MRI and WB-DW-MRI in the evaluation of lymphoma: a prospective comparison to standard FDG-PET/CT. BMC Cancer. 2015;23(15):1002.

    Article  Google Scholar 

  17. Platzek I, Beuthien-Baumann B, Langner J, et al. PET/MR for therapy response evaluation in malignant lymphoma: initial experience. MAGMA. 2013;26:49–55.

    Article  CAS  PubMed  Google Scholar 

  18. • Giraudo C, Raderer M, Karanikas G, et al. 18F-Fluorodeoxyglucose positron emission tomography/magnetic resonance in lymphoma: comparison with 18F-fluorodeoxyglucose positron emission tomography/computed tomography and with the addition of magnetic resonance diffusion-weighted imaging. Invest Radiol. 2016;51(3):163–9. Study evaluating PET/CT and PET/MR assessment of nodal and extranodal involvement in patients with Hodgkin and non-Hodgkin lymphomas, presenting the potential capabilities of DWI.

  19. Nakajo K, Tatsumi M, Inoue A, et al. Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors: comparison with positron emission tomography/computed tomography. Jpn J Radiol. 2010;28(2):95–100.

    Article  PubMed  Google Scholar 

  20. •• Queiroz MA, Kubik-Huch RA, Hauser N, et al. PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison. Eur Radiol. 2015;25(8):2222–30. Detailed and comprehensive analysis providing comparison of PET/MR and PET/CT for evaluation of gynaecological cancers and highlighting the potential benefits of each modality.

  21. Siegel CL, Andreotti RF, Cardenes HR, et al. American College of Radiology. ACR appropriateness criteria pretreatment planning of invasive cancer of the cervix. J Am Coll Radiol. 2012;9(6):395–402.

    Article  PubMed  Google Scholar 

  22. Kitajima K, Murakami K, Sakamoto S, et al. Present and future of FDG-PET/CT in ovarian cancer. Ann Nucl Med. 2011;25(3):155–64.

    Article  CAS  PubMed  Google Scholar 

  23. Kitajima K, Tanaka U, Ueno Y, et al. Role of diffusion weighted imaging and contrast-enhanced MRI in the evaluation of intrapelvic recurrence of gynecological malignant tumor. Plos One. 2015;10(1):e0117411.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Park H, Wood D, Hussain H, et al. Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med. 2012;53(4):546–51.

    Article  CAS  PubMed  Google Scholar 

  25. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68 Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014;41(5):887–97.

    Article  CAS  PubMed  Google Scholar 

  26. • How Kit N, Dugué AE, Sevin E, et al. Pairwise comparison of 18F-FDG and 18F-FCH PET/CT in prostate cancer patients with rising PSA and known or suspected second malignancy. Nucl Med Commun. 2016;37(4):348–55. Analysis of the feasibility of promising PET/MRI system for prostate cancer with highly relevant PSMA tracer.

  27. Bluemel C, Krebs M, Polat B, et al. 68Ga-PSMA-PET/CT in patients with biochemical prostate cancer recurrence and negative 18F-choline-PET/CT. Clin Nucl Med. 2016;41(7):515–21.

    Article  PubMed  Google Scholar 

  28. Beiderwellen KJ, Poeppel TD, Hartung-Knemeyer V, et al. Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results. Investig Radiol. 2013;48(5):273–9.

    Article  CAS  Google Scholar 

  29. Wulfert S, Kratochwil C, Choyke PL, et al. Multimodal imaging for early functional response assessment of (90)Y-/(177)Lu-DOTATOC peptide receptor targeted radiotherapy with DW-MRI and (68)Ga-DOTATOC-PET/CT. Mol Imaging Biol. 2014;16(4):586–94.

    Article  PubMed  Google Scholar 

  30. Armbruster M, Zech CJ, Sourbron S, et al. Diagnostic accuracy of dynamic gadoxetic-acid-enhanced MRI and PET/CT compared in patients with liver metastases from neuroendocrine neoplasms. J Magn Reson Imaging. 2014;40(2):457–66.

    Article  PubMed  Google Scholar 

  31. Schäfer JF, Gatidis S, Schmidt H, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31.

    Article  PubMed  Google Scholar 

  32. Purz S, Sabri O, Viehweger A, et al. Potential pediatric applications of PET/MR. J Nucl Med. 2014;55(Supplement 2):32S–9S.

    Article  CAS  PubMed  Google Scholar 

  33. Hirsch FW, Sattler B, Sorge I, et al. PET/MR in children: initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43:860–75.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu L, Cao Y, Liao C, Huang J, et al. Diagnostic performance of USPIO-enhanced MRI for lymph-node metastases in different body regions: a meta-analysis. Eur J Radiol. 2011;80(2):582–9.

    Article  PubMed  Google Scholar 

  35. Yong TW, Yuan ZZ, Jun Z, et al. Sensitivity of PET/MR images in liver metastases from colorectal carcinoma. Hell J Nucl Med. 2011;14(3):264–8.

    PubMed  Google Scholar 

  36. Donati OF, Hany TF, Reiner CS, et al. Value of retrospective fusion of PET and MR images in detection of hepatic metastases: comparison with 18F-FDG PET/CT and Gd-EOB-DTPA-enhanced MRI. J Nucl Med. 2010;51(5):692–9.

    Article  PubMed  Google Scholar 

  37. Samarin A, Hüllner M, Queiroz MA, et al. 18F-FDG-PET/MR increases diagnostic confidence in detection of bone metastases compared with 18F-FDG-PET/CT. Nucl Med Commun. 2015;36(12):1165–73.

    Article  CAS  PubMed  Google Scholar 

  38. Eiber M, Takei T, Souvatzoglou M, et al. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med. 2013;55:191–7.

    Article  PubMed  Google Scholar 

  39. Laurent V, Trausch G, Bruot O, et al. Comparative study of two whole-body imaging techniques in the case of melanoma metastases: advantages of multi-contrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT. Eur J Radiol. 2010;75(3):376–83.

    Article  PubMed  Google Scholar 

  40. Thomson V, Pialat JB, Gay F, et al. Whole-body MRI for metastases screening: a preliminary study using 3D VIBE sequences with automatic subtraction between noncontrast and contrast enhanced images. Am J Clin Oncol. 2008;31(3):285–92.

    Article  PubMed  Google Scholar 

  41. Kitajima K, Nakamoto Y, Okizuka H, et al. Accuracy of whole-body FDG-PET/CT for detecting brain metastases from non-central nervous system tumors. Ann Nucl Med. 2008;22(7):595–602.

    Article  PubMed  Google Scholar 

  42. Melsaether AN, Raad RA, Pujara AC, et al. Comparison of whole-body 18F FDG PET/MR imaging and whole-body 18F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast cancer. Radiology. 2016;281(1):193–202.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Burris NS, Johnson KM, Larson PE, et al. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology. 2016;278(1):239–46.

    Article  PubMed  Google Scholar 

  44. Thorwarth D, Muller AC, Pfannenberg C, et al. Combined PET/MR imaging using (68)Ga-DOTATOC for radiotherapy treatment planning in meningioma patients. Recent Results Cancer Res. 2013;194:425–39.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang S, Xin J, Sun H, et al. Accuracy of PET/MR image coregistration of cervical lesions. Nucl Med Commun. 2016;37(6):609–15.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Chen YL, Lim R, et al. Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging. Magn Reson Imaging. 2016;34(3):276–9.

    Article  CAS  PubMed  Google Scholar 

  47. Leibfarth S, Eckert F, Welz S, et al. Automatic delineation of tumor volumes by co-segmentation of combined PET/MR data. Phys Med Biol. 2015;60(14):5399–412.

    Article  CAS  PubMed  Google Scholar 

  48. •• Gialleonardo VD, Wilson DM, Keshari KR. The potential of metabolic imaging. Semin Nucl Med. 2016;46(1):28–39. Interesting and broad review of basic concepts of metabolic imaging and current and potential applications on hybrid imaging.

  49. Miese F, Scherer A, Ostendorf B, et al. Hybrid 18F- FDG PET-MRI of the hand in rheumatoid arthritis: initial results. Clin Rheumatol. 2011;30(9):1247–50.

    Article  PubMed  Google Scholar 

  50. Nawaz A, Torigian DA, Siegelman ES, et al. Diagnostic performance of FDG-PET, MRI, and plain film radiography (PFR) for the diagnosis of osteomyelitis in the diabetic foot. Mol Imaging Biol. 2010;12(3):335–42.

    Article  PubMed  Google Scholar 

  51. White JA, Rajchl M, Butler J, et al. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography-magnetic resonance imaging for the diagnosis of cardiac disease. Circulation. 2013;127:e639–41.

    Article  PubMed  Google Scholar 

  52. Pellino G, Nicolai E, Catalano OA, et al. PET/MR Versus PET/CT imaging: impact on the clinical management of small-Bowel Crohn’s disease. J Crohns Colitis. 2016;10(3):277–85.

    Article  PubMed  Google Scholar 

  53. Drzezga A, Barthel H, Minoshima S, et al. Potential clinical applications of PET/MR imaging in neurodegenerative diseases. J Nucl Med. 2014;55(Supplement 2):47S–55S.

    Article  PubMed  Google Scholar 

  54. • Barthel H, Schroeter ML, Hoffmann KT, et al. PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med. 2015;45(3):224–33. Paper featuring insights on multimodality neuroimaging in various diseases.

  55. Dukart J, Mueller K, Horstmann A, et al. Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. Plos One. 2011;6(3):e18111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Won HJ, Chang KH, Cheon JE, et al. Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. AJNR Am J Neuroradiol. 1999;20(4):593–9.

    CAS  PubMed  Google Scholar 

  57. Salamon N, Kung J, Shaw SJ, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71(20):1594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shin HW, Jewells V, Sheikh A, et al. Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure. 2015;31:1–4.

    Article  PubMed  Google Scholar 

  59. •• Heiss WD. The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S105–S112. Provides extensive analysis of potentials advantages of PET/MR systems for gliomas.

  60. Goldberg MF, Chawla S, Alavi A, et al. PET and MRI imaging of brain tumors. PET Clin. 2008;3(3):293–315.

    Article  PubMed  Google Scholar 

  61. •• Togao O, Hiwatashi A, Yamashita K, et al. Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging. Neuro Oncol. 2016;18(1):132–41. Illustrates new and promising techniques which may change evaluation of brain tumors.

  62. Hutterer M, Nowosielski M, Putzer D, et al. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol. 2013;15(3):341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pöpperl G, Kreth FW, Herms J, et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med. 2006;47(3):393–403.

    PubMed  Google Scholar 

  64. Jansen NL, Suchorska B, Wenter V, et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med. 2014;55(2):198–203.

    Article  CAS  PubMed  Google Scholar 

  65. Cruz LC, Sorensen AG. Diffusion tensor magnetic resonance imaging of brain tumors. Magn Reson Imaging Clin N Am. 2006;14(2):183–202.

    Article  PubMed  Google Scholar 

  66. Boss A, Kolb A, Hofmann M, et al. Diffusion tensor imaging in a human PET/MR hybrid system. Investig Radiol. 2010;45(5):270–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Queiroz.

Ethics declarations

Conflict of Interest

Rafael Fernandes Nunes, Felipe de Galiza Barbosa, and Marcelo A. Queiroz each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on PET/CT Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, R.F., de Galiza Barbosa, F. & Queiroz, M.A. Hybrid PET/MR: Updated Clinical Use and Potential Applications. Curr Radiol Rep 4, 61 (2016). https://doi.org/10.1007/s40134-016-0191-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-016-0191-7

Keywords

Navigation