Recent Developments in Combined PET/MRI

  • Robert R. Flavell
  • David M. Wilson
  • Spencer C. Behr
Nuclear Medicine (B Franc, Section Editor)
Part of the following topical collections:
  1. Nuclear Medicine

Abstract

Combined positron emission tomography and magnetic resonance imaging (PET/MRI) is emerging as a powerful technique in clinical applications including oncology, neurology, and cardiology. In this review, we outline recent advances in the field, with particular focus on the study of neurodegenerative diseases, epilepsy, cardiac disorders, and oncology. We also highlight recent technical improvements in PET/MRI, with particular attention to attenuation correction and the integration with advanced MRI modalities including arterial spin labeling, fMRI, and hyperpolarized 13C magnetic resonance spectroscopy.

Keywords

Nuclear medicine fMRI PET 13C magnetic resonance spectroscopy 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238(2):405–22. doi:10.1148/radiol.2382041977.CrossRefGoogle Scholar
  2. 2.
    Rosenkrantz AB, Friedman K, Chandarana H, Melsaether A, Moy L, Ding YS, et al. Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol. 2015;206:1–11. doi:10.2214/AJR.15.14968.Google Scholar
  3. 3.
    Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S113–20. doi:10.1007/s00259-008-0951-6.CrossRefPubMedGoogle Scholar
  4. 4.
    Pichler BJ, Kolb A, Nägele T, Schlemmer H-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51(3):333–6. doi:10.2967/jnumed.109.061853.CrossRefPubMedGoogle Scholar
  5. 5.
    Delso G, Voert ET, de Barbosa FG, Veit-Haibach P. Pitfalls and limitations in simultaneous PET/MRI. Semin Nucl Med. 2015;45(6):552–9. doi:10.1053/j.semnuclmed.2015.04.002.CrossRefPubMedGoogle Scholar
  6. 6.
    Fraum TJ, Fowler KJ, McConathy J. PET/MRI: emerging clinical applications in oncology. Acad Radiol. 2015;. doi:10.1016/j.acra.2015.09.008.PubMedGoogle Scholar
  7. 7.
    Werner P, Barthel H, Drzezga A, Sabri O. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging. 2015;42(3):512–26. doi:10.1007/s00259-014-2970-9.CrossRefPubMedGoogle Scholar
  8. 8.
    Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho ZH, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology. 2013;267(1):26–44. doi:10.1148/radiol.13121038.CrossRefPubMedGoogle Scholar
  9. 9.
    Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med. 2008;49(11):1875–83. doi:10.2967/jnumed.107.049353.CrossRefPubMedGoogle Scholar
  10. 10.
    Hofmann M, Pichler B, Scholkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S93–104. doi:10.1007/s00259-008-1007-7.CrossRefPubMedGoogle Scholar
  11. 11.
    Zaidi H, Montandon ML, Slosman DO. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys. 2003;30(5):937–48.CrossRefPubMedGoogle Scholar
  12. 12.
    Delso G, Wiesinger F, Sacolick LI, Kaushik SS, Shanbhag DD, Hullner M, et al. Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull. J Nucl Med. 2015;56(3):417–22. doi:10.2967/jnumed.114.149997.CrossRefPubMedGoogle Scholar
  13. 13.
    Ziegler S, Jakoby BW, Braun H, Paulus DH, Quick HH. NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging. EJNMMI Phys. 2015;2(1):18. doi:10.1186/s40658-015-0122-3.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Boellaard R, Rausch I, Beyer T, Delso G, Yaqub M, Quick HH, et al. Quality control for quantitative multicenter whole-body PET/MR studies: a NEMA image quality phantom study with three current PET/MR systems. Med Phys. 2015;42(10):5961. doi:10.1118/1.4930962.CrossRefPubMedGoogle Scholar
  15. 15.
    Barthel H, Schroeter ML, Hoffmann KT, Sabri O. PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med. 2015;45(3):224–33. doi:10.1053/j.semnuclmed.2014.12.003.CrossRefPubMedGoogle Scholar
  16. 16.
    Kobylecki C, Langheinrich T, Hinz R, Vardy ER, Brown G, Martino ME, et al. 18F-florbetapir PET in patients with frontotemporal dementia and Alzheimer disease. J Nucl Med. 2015;56(3):386–91. doi:10.2967/jnumed.114.147454.CrossRefPubMedGoogle Scholar
  17. 17.
    Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68(3):319–29. doi:10.1002/ana.22068.CrossRefPubMedGoogle Scholar
  18. 18.
    Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52(8):1210–7. doi:10.2967/jnumed.111.089730.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang J, Zuo CT, Jiang YP, Guan YH, Chen ZP, Xiang JD, et al. 18F-FP-CIT PET imaging and SPM analysis of dopamine transporters in Parkinson’s disease in various Hoehn & Yahr stages. J Neurol. 2007;254(2):185–90. doi:10.1007/s00415-006-0322-9.CrossRefPubMedGoogle Scholar
  20. 20.
    Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6(2):67–77. doi:10.1038/nrneurol.2009.215.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vemuri P, Jack CR Jr. Role of structural MRI in Alzheimer’s disease. Alzheimers Res Ther. 2010;2(4):23. doi:10.1186/alzrt47.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jena A, Taneja S, Goel R, Renjen P, Negi P. Reliability of semiquantitative 18F-FDG PET parameters derived from simultaneous brain PET/MRI: a feasibility study. Eur J Radiol. 2014;83(7):1269–74. doi:10.1016/j.ejrad.2014.04.008.CrossRefPubMedGoogle Scholar
  23. 23.
    Choi H, Cheon GJ, Kim HJ, Choi SH, Lee JS, Kim YI, et al. Segmentation-based MR attenuation correction including bones also affects quantitation in brain studies: an initial result of 18F-FP-CIT PET/MR for patients with parkinsonism. J Nucl Med. 2014;55(10):1617–22. doi:10.2967/jnumed.114.138636.CrossRefPubMedGoogle Scholar
  24. 24.
    Andersen FL, Ladefoged CN, Beyer T, Keller SH, Hansen AE, Hojgaard L, et al. Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage. 2014;84:206–16. doi:10.1016/j.neuroimage.2013.08.042.CrossRefPubMedGoogle Scholar
  25. 25.
    Hitz S, Habekost C, Furst S, Delso G, Forster S, Ziegler S, et al. Systematic comparison of the performance of integrated whole-body PET/MR imaging to conventional PET/CT for (1)(8)F-FDG brain imaging in patients examined for suspected dementia. J Nucl Med. 2014;55(6):923–31. doi:10.2967/jnumed.113.126813.CrossRefPubMedGoogle Scholar
  26. 26.
    Dukart J, Mueller K, Horstmann A, Barthel H, Moller HE, Villringer A, et al. Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS One. 2011;6(3):e18111. doi:10.1371/journal.pone.0018111.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Moodley KK, Minati L, Barnes A, Dickson JC, Ell PJ, Chan D. Simultaneous PET/MRI in frontotemporal dementia. Eur J Nucl Med Mol Imaging. 2013;40(3):468–9. doi:10.1007/s00259-012-2315-5.CrossRefPubMedGoogle Scholar
  28. 28.
    Vercher-Conejero JL, Rubbert C, Kohan AA, Partovi S, O’Donnell JK. Amyloid PET/MRI in the differential diagnosis of dementia. Clin Nucl Med. 2014;39(6):e336–9. doi:10.1097/RLU.0b013e31829b9e5f.CrossRefPubMedGoogle Scholar
  29. 29.
    •• Tahmasian M, Shao J, Meng C, Grimmer T, Diehl-Schmid J, Yousefi BH, et al. Based on the network degeneration hypothesis: separating individual patients with different neurodegenerative syndromes in a preliminary hybrid PET/MR study. J Nucl Med. 2015. doi:10.2967/jnumed.115.165464. This study demonstrates that PET/MRI can be used to discriminate between patients with different types of dementias.
  30. 30.
    Spencer SS. The relative contributions of MRI, SPECT, and PET imaging in epilepsy. Epilepsia. 1994;35:S72–89. doi:10.1111/j.1528-1157.1994.tb05990.x.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee KK, Salamon N. [18F] fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. AJNR Am J Neuroradiol. 2009;30(10):1811–6. doi:10.3174/ajnr.A1637.CrossRefPubMedGoogle Scholar
  32. 32.
    LoPinto-Khoury C, Sperling MR, Skidmore C, Nei M, Evans J, Sharan A, et al. Surgical outcome in PET-positive, MRI-negative patients with temporal lobe epilepsy. Epilepsia. 2012;53(2):342–8. doi:10.1111/j.1528-1167.2011.03359.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Yang PF, Pei JS, Zhang HJ, Lin Q, Mei Z, Zhong ZH, et al. Long-term epilepsy surgery outcomes in patients with PET-positive, MRI-negative temporal lobe epilepsy. Epilepsy Behav E&B. 2014;41:91–7. doi:10.1016/j.yebeh.2014.09.054.CrossRefGoogle Scholar
  34. 34.
    Chassoux F, Rodrigo S, Semah F, Beuvon F, Landre E, Devaux B, et al. FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology. 2010;75(24):2168–75. doi:10.1212/WNL.0b013e31820203a9.CrossRefPubMedGoogle Scholar
  35. 35.
    Vinton AB, Carne R, Hicks RJ, Desmond PM, Kilpatrick C, Kaye AH, et al. The extent of resection of FDG-PET hypometabolism relates to outcome of temporal lobectomy. Brain J Neurol. 2007;130(Pt 2):548–60. doi:10.1093/brain/awl232.CrossRefGoogle Scholar
  36. 36.
    Fernandez S, Donaire A, Seres E, Setoain X, Bargallo N, Falcon C, et al. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy. Epilepsy Res. 2015;111:1–9. doi:10.1016/j.eplepsyres.2014.12.011.CrossRefPubMedGoogle Scholar
  37. 37.
    Salamon N, Kung J, Shaw SJ, Koo J, Koh S, Wu JY, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71(20):1594–601. doi:10.1212/01.wnl.0000334752.41807.2f.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Catana C, Drzezga A, Heiss WD, Rosen BR. PET/MRI for neurologic applications. J Nucl Med. 2012;53(12):1916–25. doi:10.2967/jnumed.112.105346.CrossRefPubMedGoogle Scholar
  39. 39.
    Garibotto V, Heinzer S, Vulliemoz S, Guignard R, Wissmeyer M, Seeck M, et al. Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med. 2013;38(1):e13–8. doi:10.1097/RLU.0b013e3182638ea6.CrossRefPubMedGoogle Scholar
  40. 40.
    Day BK, Eisenman L, Black J, Maccotta L, Hogan RE. A case study of voltage-gated potassium channel antibody-related limbic encephalitis with PET/MRI findings. Epilepsy Behav Case Rep. 2015;4:23–6. doi:10.1016/j.ebcr.2015.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    • Grouiller F, Delattre BM, Pittau F, Heinzer S, Lazeyras F, Spinelli L, et al. All-in-one interictal presurgical imaging in patients with epilepsy: single-session EEG/PET/(f)MRI. Eur J Nucl Med Mol Imaging. 2015;42(7):1133–43. doi:10.1007/s00259-015-3045-2. This study demonstrated the ability of combined EEG, PET, and fMRI to provide complementary properties for imaging patients with epilepsy.
  42. 42.
    Harisankar CN, Mittal BR, Agrawal KL, Abrar ML, Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardio. 2011;18(5):926–36. doi:10.1007/s12350-011-9422-8.CrossRefGoogle Scholar
  43. 43.
    Nensa F, Schlosser T. Cardiovascular hybrid imaging using PET/MRI. Fortschr Röntgenstr. 2014;186(12):1094–101.CrossRefGoogle Scholar
  44. 44.
    Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54(3):402–15. doi:10.2967/jnumed.112.105353.CrossRefPubMedGoogle Scholar
  45. 45.
    Rischpler C, Nekolla SG, Kunze KP, Schwaiger M. PET/MRI of the heart. Semin Nucl Med. 2015;45(3):234–47. doi:10.1053/j.semnuclmed.2014.12.004.CrossRefPubMedGoogle Scholar
  46. 46.
    Schlosser T, Nensa F, Mahabadi AA, Poeppel TD. Hybrid MRI/PET of the heart: a new complementary imaging technique for simultaneous acquisition of MRI and PET data. Heart. 2013;99(5):351–2. doi:10.1136/heartjnl-2012-302740.CrossRefPubMedGoogle Scholar
  47. 47.
    Kong EJ, Lee SH, Cho IH. Myocardial fibrosis in hypertrophic cardiomyopathy demonstrated by integrated cardiac F-18 FDG PET/MR. Nucl Med Mol Imaging. 2013;47(3):196–200. doi:10.1007/s13139-013-0201-0.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    •• Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology. 2013;268(2):366–73. doi:10.1148/radiol.13130231. This pioneering study demonstrated excellent correspondence between delayed gadolinium enhancement MR and PET results for patients with myocardial infarction.
  49. 49.
    • Rischpler C, Langwieser N, Souvatzoglou M, Batrice A, van Marwick S, Snajberk J, et al. PET/MRI early after myocardial infarction: evaluation of viability with late gadolinium enhancement transmurality vs. 18F-FDG uptake. Eur Heart J Cardiovasc Imaging. 2015;16(6):661–9. doi:10.1093/ehjci/jeu317. This study demonstrated correlation of FDG PET and MRI findings in patients with myocardial infarction. Furthermore, the results of the scan correlated with post-MI wall motion abnormalities.
  50. 50.
    Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59(2):153–63. doi:10.1016/j.jacc.2011.08.066.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241–8. doi:10.2967/jnumed.111.090662.CrossRefPubMedGoogle Scholar
  52. 52.
    Vignaux O. Cardiac sarcoidosis: spectrum of MRI features. Am J Roentgenol. 2005;184(1):249–54. doi:10.2214/ajr.184.1.01840249.CrossRefGoogle Scholar
  53. 53.
    White JA, Rajchl M, Butler J, Thompson RT, Prato FS, Wisenberg G. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography-magnetic resonance imaging for the diagnosis of cardiac disease. Circulation. 2013;127(22):e639–41. doi:10.1161/circulationaha.112.001217.CrossRefPubMedGoogle Scholar
  54. 54.
    Schneider S, Batrice A, Rischpler C, Eiber M, Ibrahim T, Nekolla SG. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J. 2014;35(5):312. doi:10.1093/eurheartj/eht335.CrossRefPubMedGoogle Scholar
  55. 55.
    Wada K, Niitsuma T, Yamaki T, Masuda A, Ito H, Kubo H, et al. Simultaneous cardiac imaging to detect inflammation and scar tissue with F-fluorodeoxyglucose PET/MRI in cardiac sarcoidosis. J Nucl Cardiol. 2015;. doi:10.1007/s12350-015-0348-4.PubMedGoogle Scholar
  56. 56.
    Ripa RS, Knudsen A, Hag AM, Lebech AM, Loft A, Keller SH, et al. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imaging. 2013;3(4):361–71.PubMedPubMedCentralGoogle Scholar
  57. 57.
    • Hyafil F, Schindler A, Sepp D, Obenhuber T, Bayer-Karpinska A, Boeckh-Behrens T, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined 18F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging. 2015;43:270–9. doi:10.1007/s00259-015-3201-8. High risk plaque features were detected using PET/MRI in patients with cryptogenic strokes. These plaques were occult on conventional imaging.
  58. 58.
    Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383(9918):705–13. doi:10.1016/S0140-6736(13)61754-7.CrossRefPubMedGoogle Scholar
  59. 59.
    Pedersen SF, Sandholt BV, Keller SH, Hansen AE, Clemmensen AE, Sillesen H, et al. 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy. Arterioscler Thromb Vasc Biol. 2015;35(7):1696–703. doi:10.1161/atvbaha.114.305067.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Einspieler I, Thürmel K, Pyka T, Eiber M, Wolfram S, Moog P, et al. Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study. Eur J Nucl Med Mol Imaging. 2015;42(7):1012–24. doi:10.1007/s00259-015-3007-8.CrossRefPubMedGoogle Scholar
  61. 61.
    Lee G, Hoseok I, Kim SJ, Jeong YJ, Kim IJ, Pak K, et al. Clinical implication of PET/MR imaging in preoperative esophageal cancer staging: comparison with PET/CT, endoscopic ultrasonography, and CT. J Nucl Med. 2014;55(8):1242–7. doi:10.2967/jnumed.114.138974.CrossRefPubMedGoogle Scholar
  62. 62.
    Kubiessa K, Purz S, Gawlitza M, Kuhn A, Fuchs J, Steinhoff KG, et al. Initial clinical results of simultaneous 18F-FDG PET/MRI in comparison to 18F-FDG PET/CT in patients with head and neck cancer. Eur J Nucl Med Mol Imaging. 2014;41(4):639–48. doi:10.1007/s00259-013-2633-2.CrossRefPubMedGoogle Scholar
  63. 63.
    Bailey DL, Barthel H, Beyer T, Boellaard R, Guckel B, Hellwig D, et al. Summary report of the First International Workshop on PET/MR imaging, March 19–23, 2012, Tubingen, Germany. Mol Imaging Biol. 2013;15(4):361–71. doi:10.1007/s11307-013-0623-1.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Catalano OA, Nicolai E, Rosen BR, Luongo A, Catalano M, Iannace C, et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer. 2015;112(9):1452–60. doi:10.1038/bjc.2015.112.CrossRefPubMedGoogle Scholar
  65. 65.
    Botsikas D, Kalovidouri A, Becker M, Copercini M, Djema DA, Bodmer A, et al. Clinical utility of 18F-FDG-PET/MR for preoperative breast cancer staging. Eur Radiol. 2015;. doi:10.1007/s00330-015-4054-z.Google Scholar
  66. 66.
    Brandmaier P, Purz S, Bremicker K, Hockel M, Barthel H, Kluge R, et al. Simultaneous [18F]FDG-PET/MRI: correlation of apparent diffusion coefficient (ADC) and standardized uptake value (SUV) in primary and recurrent cervical cancer. PLoS One. 2015;10(11):e0141684. doi:10.1371/journal.pone.0141684.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Fraioli F, Screaton NJ, Janes SM, Win T, Menezes L, Kayani I, et al. Non-small-cell lung cancer resectability: diagnostic value of PET/MR. Eur J Nucl Med Mol Imaging. 2015;42(1):49–55. doi:10.1007/s00259-014-2873-9.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Huellner MW, Barbosa FG, Husmann L, Pietsch CM, Mader CE, Burger IA, et al. TNM staging of NSCLC: comparison of PET/MR and PET/CT. J Nucl Med. 2015. doi:10.2967/jnumed.115.162040.Google Scholar
  69. 69.
    Ohno Y, Koyama H, Yoshikawa T, Takenaka D, Seki S, Yui M, et al. Three-way comparison of whole-body mr, coregistered whole-body FDG PET/MR, and integrated whole-body FDG PET/CT imaging: TNM and stage assessment capability for non-small cell lung cancer patients. Radiology. 2015;275(3):849–61. doi:10.1148/radiol.14140936.CrossRefPubMedGoogle Scholar
  70. 70.
    Schaarschmidt B, Buchbender C, Gomez B, Rubbert C, Hild F, Kohler J, et al. Thoracic staging of non-small-cell lung cancer using integrated (18)F-FDG PET/MR imaging: diagnostic value of different MR sequences. Eur J Nucl Med Mol Imaging. 2015;42(8):1257–67. doi:10.1007/s00259-015-3050-5.CrossRefPubMedGoogle Scholar
  71. 71.
    Yoon SH, Goo JM, Lee SM, Park CM, Cheon GJ. PET/MR imaging for chest diseases: review of initial studies on pulmonary nodules and lung cancers. Magn Reson Imaging Clin N Am. 2015;23(2):245–59. doi:10.1016/j.mric.2015.01.008.CrossRefPubMedGoogle Scholar
  72. 72.
    Maggialetti N, Ferrari C, Minoia C, Asabella AN, Ficco M, Loseto G, et al. Role of WB-MR/DWIBS compared to F-FDG PET/CT in the therapy response assessment of lymphoma. Radiol Med (Torino). 2015;. doi:10.1007/s11547-015-0581-6.Google Scholar
  73. 73.
    Varoquaux A, Rager O, Dulguerov P, Burkhardt K, Ailianou A, Becker M. Diffusion-weighted and PET/MR Imaging after radiation therapy for malignant head and neck tumors. Radiographics. 2015;35(5):1502–27. doi:10.1148/rg.2015140029.CrossRefPubMedGoogle Scholar
  74. 74.
    Grueneisen J, Schaarschmidt BM, Beiderwellen K, Schulze-Hagen A, Heubner M, Kinner S, et al. Diagnostic value of diffusion-weighted imaging in simultaneous 18F-FDG PET/MR imaging for whole-body staging of women with pelvic malignancies. J Nucl Med. 2014;55(12):1930–5. doi:10.2967/jnumed.114.146886.CrossRefPubMedGoogle Scholar
  75. 75.
    Beiderwellen KJ, Poeppel TD, Hartung-Knemeyer V, Buchbender C, Kuehl H, Bockisch A, et al. Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results. Invest Radiol. 2013;48(5):273–9. doi:10.1097/RLI.0b013e3182871a7f.CrossRefPubMedGoogle Scholar
  76. 76.
    • Hope TA, Pampaloni MH, Nakakura E, VanBrocklin H, Slater J, Jivan S, et al. Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom Imaging 2015;40(6):1432–40. doi:10.1007/s00261-015-0409-9. This study found that [ 68 Ga]DOTA TOC PET/MRI using hepatobiliary targeted contrast agents increases sensitivity for the detection of liver metastases in patients with neuroendocrine tumors.
  77. 77.
    Murphy G, Haider M, Ghai S, Sreeharsha B. The expanding role of MRI in prostate cancer. AJR Am J Roentgenol. 2013;201(6):1229–38. doi:10.2214/AJR.12.10178.CrossRefPubMedGoogle Scholar
  78. 78.
    Flavell RR, Westphalen AC, Liang C, Sotto CC, Noworolski SM, Vigneron DB, et al. Abnormal findings on multiparametric prostate magnetic resonance imaging predict subsequent biopsy upgrade in patients with low risk prostate cancer managed with active surveillance. Abdom Imaging. 2014;39(5):1027–35. doi:10.1007/s00261-014-0136-7.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    de Perrot T, Rager O, Scheffler M, Lord M, Pusztaszeri M, Iselin C, et al. Potential of hybrid (18)F-fluorocholine PET/MRI for prostate cancer imaging. Eur J Nucl Med Mol Imaging. 2014;41(9):1744–55. doi:10.1007/s00259-014-2786-7.CrossRefPubMedGoogle Scholar
  80. 80.
    Wetter A, Nensa F, Schenck M, Heusch P, Poppel T, Bockisch A, et al. Combined PET imaging and diffusion-weighted imaging of intermediate and high-risk primary prostate carcinomas with simultaneous [18F] choline PET/MRI. PLoS One. 2014;9(7):e101571. doi:10.1371/journal.pone.0101571.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Wetter A, Lipponer C, Nensa F, Heusch P, Rubben H, Schlosser TW, et al. Quantitative evaluation of bone metastases from prostate cancer with simultaneous [18F] choline PET/MRI: combined SUV and ADC analysis. Ann Nucl Med. 2014;28(5):405–10. doi:10.1007/s12149-014-0825-x.CrossRefPubMedGoogle Scholar
  82. 82.
    • Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014;41(5):887–97. doi:10.1007/s00259-013-2660-z. This study demonstrated that [ 68 Ga]PSMA PET/MRI is superior to PET/CT for detecting prostate cancer metastases.
  83. 83.
    Xu G, Rowley HA, Wu G, Alsop DC, Shankaranarayanan A, Dowling M, et al. Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer’s disease. NMR Biomed. 2010;23(3):286–93. doi:10.1002/nbm.1462.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med. 1983;24(9):782–9.PubMedGoogle Scholar
  85. 85.
    Bokkers RPH, Bremmer JP, van Berckel BNM, Lammertsma AA, Hendrikse J, Pluim JPW, et al. Arterial spin labeling perfusion MRI at multiple delay times: a correlative study with H(2)(15)O positron emission tomography in patients with symptomatic carotid artery occlusion. J Cereb Blood Flow Metab. 2010;30(1):222–9. doi:10.1038/jcbfm.2009.204.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    • Zhang K, Herzog H, Mauler J, Filss C, Okell TW, Kops ER, et al. Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. J Cereb Blood Flow Metab. 2014;34(8):1373–80. doi:10.1038/jcbfm.2014.92. This study demonstrated excellent correlation between [ 18 O]water and arterial spin labeling methods for cerebral blood flow measurements.
  87. 87.
    Wehrl HF, Hossain M, Lankes K, Liu C-C, Bezrukov I, Martirosian P, et al. Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med. 2013;19(9):1184–9. doi:10.1038/nm.3290. http://www.nature.com/nm/journal/v19/n9/abs/nm.3290.html.
  88. 88.
    Riedl V, Bienkowska K, Strobel C, Tahmasian M, Grimmer T, Förster S, et al. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study. J Neurosci. 2014;34(18):6260–6. doi:10.1523/jneurosci.0492-14.2014.CrossRefPubMedGoogle Scholar
  89. 89.
    Keshari KR, Sriram R, Koelsch BL, Van Criekinge M, Wilson DM, Kurhanewicz J, et al. Hyperpolarized 13C-pyruvate magnetic resonance reveals rapid lactate export in metastatic renal cell carcinomas. Cancer Res. 2013;73(2):529–38. doi:10.1158/0008-5472.CAN-12-3461.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, Zhang VY, et al. Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res. 2008;68(20):8607–15. doi:10.1158/0008-5472.CAN-08-0749.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt R, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature. 2008;453(7197):940–3. doi:10.1038/nature07017.CrossRefPubMedGoogle Scholar
  92. 92.
    Flavell RR, von Morze C, Blecha JE, Korenchan DE, Van Criekinge M, Sriram R, et al. Application of Good’s buffers to pH imaging using hyperpolarized 13C MRI. Chem Commun. 2015;51(74):14119–22. doi:10.1039/C5CC05348J.CrossRefGoogle Scholar
  93. 93.
    Keshari KR, Kurhanewicz J, Bok R, Larson PE, Vigneron DB, Wilson DM. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc Natl Acad Sci USA. 2011;108(46):18606–11. doi:10.1073/pnas.1106920108.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Gallagher FA, Kettunen MI, Hu D-E, Jensen PR, Rit Zandt, Karlsson M, et al. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci. 2009;106(47):19801–6. doi:10.1073/pnas.0911447106.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    von Morze C, Larson PEZ, Hu S, Keshari K, Wilson DM, Ardenkjaer-Larsen JH, et al. Imaging of blood flow using hyperpolarized [C-13] urea in preclinical cancer models. J Magn Reson Imaging. 2011;33(3):692–7. doi:10.1002/Jmri.22484.CrossRefGoogle Scholar
  96. 96.
    • Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med. 2013;5(198):198ra08. doi:10.1126/scitranslmed.3006070. This pioneering study was the first to demonstrate the application of hyperpolarized 13 C MRI to imaging in man.
  97. 97.
    Keshari KR, Wilson DM. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev. 2014;43(5):1627–59. doi:10.1039/c3cs60124b.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Keshari KR, Sai V, Wang ZJ, Vanbrocklin HF, Kurhanewicz J, Wilson DM. Hyperpolarized [1-13C]dehydroascorbate MR spectroscopy in a murine model of prostate cancer: comparison with 18F-FDG PET. J Nucl Med. 2013;54(6):922–8. doi:10.2967/jnumed.112.115402.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Gutte H, Hansen AE, Henriksen ST, Johannesen HH, Ardenkjaer-Larsen J, Vignaud A, et al. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner. Am J Nucl Med Mol Imaging. 2015;5(1):38–45.PubMedPubMedCentralGoogle Scholar
  100. 100.
    •• Gutte H, Hansen AE, Larsen MM, Rahbek S, Henriksen ST, Johannesen HH, et al. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG PET (HyperPET) in 10 dogs with cancer. J Nucl Med. 2015;56(11):1786–92. doi:10.2967/jnumed.115.156364. This study demonstrates the feasibility for combined PET and hyperpolarized 13 C MRI.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Robert R. Flavell
    • 1
  • David M. Wilson
    • 1
  • Spencer C. Behr
    • 1
  1. 1.Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations