Skip to main content

Advertisement

Log in

Cystic Malformations Within the Posterior Fossa

  • Neuroimaging (B Soares, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Cystic malformations within the posterior fossa are rather common findings in pediatric neuroimaging. They may be divided in two main groups based on their location and size: large extra-cerebellar and small intra-cerebellar cystic malformations. Both groups include various diseases: Dandy–Walker malformation, Blake’s pouch cyst, posterior fossa arachnoid cysts, and mega cisterna magna are extra-cerebellar posterior fossa cystic malformations, while α-dystroglycanopathies, GPR56-related fronto-parietal polymicrogyria, and Poretti–Boltshauser due to LAMA1 mutations are intra-cerebellar posterior fossa cystic malformations. These diseases may be differentiated based on the neuroimaging pattern. Differentiation between the various diseases associated with extra- and intra-cerebellar cystic malformations is important in terms of diagnosis, management, prognosis, and counseling of the affected families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Boltshauser E. Cerebellum-small brain but large confusion: a review of selected cerebellar malformations and disruptions. Am J Med Genet A. 2004;126A(4):376–85.

    Article  PubMed  Google Scholar 

  2. Doherty D, Millen KJ, Barkovich AJ. Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics. Lancet Neurol. 2013;12(4):381–93.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bosemani T, Orman G, Boltshauser E, Tekes A, Huisman TA, Poretti A. Congenital abnormalities of the posterior fossa. Radiographics. 2015;35(1):200–20.

    Article  PubMed  Google Scholar 

  4. Jissendi-Tchofo P, Severino M, Nguema-Edzang B, Toure C, Soto Ares G, Barkovich AJ. Update on neuroimaging phenotypes of mid-hindbrain malformations. Neuroradiology. 2015;57(2):113–38.

    Article  PubMed  Google Scholar 

  5. Patel S, Barkovich AJ. Analysis and classification of cerebellar malformations. AJNR Am J Neuroradiol. 2002;23(7):1074–87.

    PubMed  Google Scholar 

  6. Tortori-Donati P, Fondelli MP, Rossi A, Carini S. Cystic malformations of the posterior cranial fossa originating from a defect of the posterior membranous area. Mega cisterna magna and persisting Blake’s pouch: two separate entities. Childs Nerv Syst. 1996;12(6):303–8.

    Article  CAS  PubMed  Google Scholar 

  7. Barth PG. Cerebellar dentate dysplasia. Brain Dev. 2011;33(8):621–6.

    Article  PubMed  Google Scholar 

  8. • Boltshauser E, Scheer I, Huisman TA, Poretti A. Cerebellar cysts in children: a pattern recognition approach. Cerebellum. 2015;14(3):308–16. Recent article reviewing various forms of intra-cerebellar cysts with different etiologies and pathomechanisms.

  9. Liao C, Fu F, Li R, Yang X, Xu Q, Li D. Prenatal diagnosis and molecular characterization of a novel locus for Dandy–Walker malformation on chromosome 7p21.3q. Eur J Med Genet. 2012;55(8–9):472–5.

    Article  PubMed  Google Scholar 

  10. Grinberg I, Northrup H, Ardinger H, Prasad C, Dobyns WB, Millen KJ. Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy–Walker malformation. Nat Genet. 2004;36(10):1053–5.

    Article  CAS  PubMed  Google Scholar 

  11. Aldinger KA, Lehmann OJ, Hudgins L, et al. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet. 2009;41(9):1037–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zanni G, Barresi S, Travaglini L, et al. FGF17, a gene involved in cerebellar development, is downregulated in a patient with Dandy-Walker malformation carrying a de novo 8p deletion. Neurogenetics. 2011;12(3):241–5.

    Article  CAS  PubMed  Google Scholar 

  13. Darbro BW, Mahajan VB, Gakhar L, et al. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles. Hum Mutat. 2013;34(8):1075–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. • Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain. 2009;132(Pt 12):3199–230. This article proposes a classification of mid-hindbrain malformations based upon embryology and genetics.

  15. Limperopoulos C, Folkerth R, Barnewolt CE, Connolly S, Du Plessis AJ. Posthemorrhagic cerebellar disruption mimicking Dandy-Walker malformation: fetal imaging and neuropathology findings. Semin Pediatr Neurol. 2010;17(1):75–81.

    Article  PubMed  Google Scholar 

  16. Pichiecchio A, Decio A, Di Perri C, Parazzini C, Rossi A, Signorini S. “Acquired” Dandy-Walker malformation and cerebellar hemorrhage: usefulness of serial MRI. Eur J Paediatr Neurol. 2015;20:188–91.

    Article  PubMed  Google Scholar 

  17. Kumar R, Kumar Jain M, Kumar Chhabra D. Dandy-Walker syndrome: different modalities of treatment and outcome in 42 cases. Childs Nerv Syst. 2001;17(6):348–52.

    Article  CAS  PubMed  Google Scholar 

  18. Alexiou GA, Sfakianos G, Prodromou N. Dandy-Walker malformation: analysis of 19 cases. J Child Neurol. 2010;25(2):188–91.

    Article  PubMed  Google Scholar 

  19. Klein O, Pierre-Kahn A, Boddaert N, Parisot D, Brunelle F. Dandy-Walker malformation: prenatal diagnosis and prognosis. Childs Nerv Syst. 2003;19(7–8):484–9.

    Article  CAS  PubMed  Google Scholar 

  20. Boddaert N, Klein O, Ferguson N, et al. Intellectual prognosis of the Dandy-Walker malformation in children: the importance of vermian lobulation. Neuroradiology. 2003;45(5):320–4.

    CAS  PubMed  Google Scholar 

  21. • Correa GG, Amaral LF, Vedolin LM. Neuroimaging of Dandy-Walker malformation: new concepts. Top Magn Reson Imaging. 2011;22(6):303–12. Recent review article on neuroimaging findings of extra-cerebellar posterior fossa cystic malformations.

  22. Mohanty A, Biswas A, Satish S, Shankar Praharaj S, Sastry KV. Treatment options for Dandy-Walker malformation. J Neurosurg. 2006;105(5):348–56.

    PubMed  Google Scholar 

  23. Parisi MA, Dobyns WB. Human malformations of the midbrain and hindbrain: review and proposal classification scheme. Mol Genet Metab. 2003;80(1–2):36–53.

    Article  CAS  PubMed  Google Scholar 

  24. Yildiz H, Yazici Z, Hakyemez B, Erdogan C, Parlak M. Evaluation of CSF flow patterns of posterior fossa cystic malformations using CSF flow MR imaging. Neuroradiology. 2006;48(9):595–605.

    Article  PubMed  Google Scholar 

  25. Limperopoulos C, Robertson RL, Khwaja OS, et al. How accurately does current fetal imaging identify posterior fossa anomalies? AJR Am J Roentgenol. 2008;190(6):1637–43.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Malinger G, Lev D, Lerman-Sagie T. The fetal cerebellum. Pitfalls in diagnosis and management. Prenat Diagn. 2009;29(4):372–80.

    Article  PubMed  Google Scholar 

  27. Adamsbaum C, Moutard ML, André C, et al. MRI of the fetal posterior fossa. Pediatr Radiol. 2005;35(2):124–40.

    Article  PubMed  Google Scholar 

  28. Poretti A, Boltshauser E, Doherty D. Cerebellar hypoplasia: differential diagnosis and diagnostic approach. Am J Med Genet C Semin Med Genet. 2014;166(2):211–26.

    Article  CAS  Google Scholar 

  29. • Nelson MD, Jr., Maher K, Gilles FH. A different approach to cysts of the posterior fossa. Pediatr Radiol. 2004;34(9):720–32. Review article discussing neuroimaging and neuropathology features of extra-cerebellar posterior fossa cystic malformations.

  30. Hirono S, Ito D, Murai H, et al. Postnatal development of Blake’s pouch cyst: a case report and new insight for its pathogenesis. Childs Nerv Syst. 2014;30(10):1767–71.

    Article  PubMed  Google Scholar 

  31. Cornips EM, Overvliet GM, Weber JW, et al. The clinical spectrum of Blake’s pouch cyst: report of six illustrative cases. Childs Nerv Syst. 2010;26(8):1057–64.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Calabro F, Arcuri T, Jinkins JR. Blake’s pouch cyst: an entity within the Dandy-Walker continuum. Neuroradiology. 2000;42(4):290–5.

    Article  CAS  PubMed  Google Scholar 

  33. Ali ZS, Lang SS, Bakar D, Storm PB, Stein SC. Pediatric intracranial arachnoid cysts: comparative effectiveness of surgical treatment options. Childs Nerv Syst. 2014;30(3):461–9.

    Article  PubMed  Google Scholar 

  34. Martinez-Lage JF, Perez-Espejo MA, Almagro MJ, Lopez-Guerrero AL. Hydrocephalus and arachnoid cysts. Childs Nerv Syst. 2011;27(10):1643–52.

    Article  PubMed  Google Scholar 

  35. Boltshauser E, Martin F, Altermatt S. Outcome in children with space-occupying posterior fossa arachnoid cysts. Neuropediatrics. 2002;33(3):118–21.

    Article  CAS  PubMed  Google Scholar 

  36. Marin-Sanabria EA, Yamamoto H, Nagashima T, Kohmura E. Evaluation of the management of arachnoid cyst of the posterior fossa in pediatric population: experience over 27 years. Childs Nerv Syst. 2007;23(5):535–42.

    Article  PubMed  Google Scholar 

  37. Shekdar K. Posterior fossa malformations. Semin Ultrasound CT MRI. 2011;32(3):228–41.

    Article  Google Scholar 

  38. Altman NR, Naidich TP, Braffman BH. Posterior fossa malformations. AJNR Am J Neuroradiol. 1992;13(2):691–724.

    CAS  PubMed  Google Scholar 

  39. Long A, Moran P, Robson S. Outcome of fetal cerebral posterior fossa anomalies. Prenat Diagn. 2006;26(8):707–10.

    Article  PubMed  Google Scholar 

  40. Forzano F, Mansour S, Ierullo A, Homfray T, Thilaganathan B. Posterior fossa malformation in fetuses: a report of 56 further cases and a review of the literature. Prenat Diagn. 2007;27(6):495–501.

    Article  CAS  PubMed  Google Scholar 

  41. Bolduc ME, Du Plessis AJ, Sullivan N, et al. Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child Neurol. 2011;53(5):409–16.

    Article  PubMed  Google Scholar 

  42. Bonnemann CG, Wang CH, Quijano-Roy S, et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord. 2014;24(4):289–311.

    Article  PubMed  Google Scholar 

  43. Moore SA, Saito F, Chen J, et al. Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature. 2002;418(6896):422–5.

    Article  CAS  PubMed  Google Scholar 

  44. Aida N, Yagishita A, Takada K, Katsumata Y. Cerebellar MR in Fukuyama congenital muscular dystrophy: polymicrogyria with cystic lesions. AJNR Am J Neuroradiol. 1994;15(9):1755–9.

    CAS  PubMed  Google Scholar 

  45. Mercuri E, Muntoni F. The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol. 2012;72(1):9–17.

    Article  PubMed  Google Scholar 

  46. • Clement E, Mercuri E, Godfrey C, et al. Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol. 2008;64(5):573–82. Spectrum of neuroimaging findings in α-dystroglycanopathies and correlation between neuroimaging phenotype and genotype in 27 patients.

  47. Amir T, Poretti A, Boltshauser E, Huisman TA. Differential diagnosis of ventriculomegaly and brainstem kinking on fetal MRI. Brain Dev. 2015;38:103–8.

    Article  PubMed  Google Scholar 

  48. • Bahi-Buisson N, Poirier K, Boddaert N, et al. GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain. 2010;133(11):3194–209. Clinical and neuroimaging phenotype in 14 patients with GPR56 mutations.

  49. Li S, Jin Z, Koirala S, et al. GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci. 2008;28(22):5817–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koirala S, Jin Z, Piao X, Corfas G. GPR56-regulated granule cell adhesion is essential for rostral cerebellar development. J Neurosci. 2009;29(23):7439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Giera S, Deng Y, Luo R, et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun. 2015;6(6):121.

    Google Scholar 

  52. • Poretti A, Hausler M, von Moers A, et al. Ataxia, intellectual disability, and ocular apraxia with cerebellar cysts: a new disease? Cerebellum. 2014;13(1):79–88. Clinical and neuroimaging phenotype in children with Poretti-Boltshauser syndrome.

  53. • Aldinger KA, Mosca SJ, Tetreault M, et al. Mutations in LAMA1 cause cerebellar dysplasia and cysts with and without retinal dystrophy. Am J Hum Genet. 2014;95(2):227–34. First article reporting LAMA1 mutations in children with Poretti-Boltshauser syndrome.

  54. Heng C, Lefebvre O, Klein A, et al. Functional role of laminin alpha1 chain during cerebellum development. Cell Adhes Migr. 2011;5(6):480–9.

    Article  Google Scholar 

  55. Ichikawa-Tomikawa N, Ogawa J, Douet V, et al. Laminin alpha1 is essential for mouse cerebellar development. Matrix Biol. 2012;31(1):17–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Edwards MM, Mammadova-Bach E, Alpy F, et al. Mutations in Lama1 disrupt retinal vascular development and inner limiting membrane formation. J Biol Chem. 2010;285(10):7697–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Edwards MM, McLeod DS, Grebe R, Heng C, Lefebvre O, Lutty GA. Lama1 mutations lead to vitreoretinal blood vessel formation, persistence of fetal vasculature, and epiretinal membrane formation in mice. BMC Dev Biol. 2011;11:60.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Poretti.

Additional information

This article is part of the Topical Collection on Neuroimaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poretti, A., Bosemani, T. Cystic Malformations Within the Posterior Fossa. Curr Radiol Rep 4, 17 (2016). https://doi.org/10.1007/s40134-016-0147-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-016-0147-y

Keywords

Navigation