Celiac Disease



In recent years, a number of developments have occurred in the world of celiac disease (CeD): the role of genetic and environmental factors involved in the pathogenesis has been better elucidated, new information on the fate of the “potential” celiac children has been generated, new diagnostic and follow-up guidelines have been created, and new exciting prospects have been opened in the possibility of alternative treatments. This review will cite recent relevant publications, presenting in a concise format their most meaningful contributions.

Purpose of Review

With the constantly changing presentation of celiac disease, the practicing physician is challenged with the task of discerning which patients need to be assessed in the most cost conscious way possible. This review aims at providing an updated, critical reassessment of celiac disease and how to accomplish this goal.

Recent Findings

Environmental factors responsible for the ever-increasing prevalence of celiac disease do not appear to include infant feeding modalities as thought for many years, but rather now include infections, with a special role for viral infections, and use of antibiotics in early life. Given the invasive nature of endoscopy in the diagnosis of CeD, algorithms have been created to limit the need for endoscopy with biopsy in select patients. Celiac patients with straightforward symptoms and appropriate resolution of symptoms should not require repeat endoscopies to confirm mucosal healing. Celiac children respond much faster and more completely to the gluten-free diet than their adult counterparts. While a gluten-free diet remains the only current treatment option for CeD, many new and exciting pharmacological agents are on the horizon


Advanced knowledge of possible environmental factors that may lead to the onset of CeD. The correct approach to working up and treating a patient with CeD. Emerging therapy options for patients with CeD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Choung, R.S., Larson S.A., Khaleghi S., Rubio-Tapia A., Ovsyannikova I.G., King K.S., Larson J.J., Lahr B.D., Poland G.A., Camilleri M.J., Murray J.A., Prevalence and morbidity of undiagnosed celiac disease from a community-based study. Gastroenterology, 2017. 152(4): p. 830–839 e5, DOI: https://doi.org/10.1053/j.gastro.2016.11.043.

  2. 2.

    Dydensborg S, Toftedal P, Biaggi M, Lillevang ST, Hansen DG, Husby S. Increasing prevalence of coeliac disease in Denmark: a linkage study combining national registries. Acta Paediatr. 2012;101(2):179–84. https://doi.org/10.1111/j.1651-2227.2011.02392.x.

    Article  PubMed  Google Scholar 

  3. 3.

    Vilppula A, Kaukinen K, Luostarinen L, Krekelä I, Patrikainen H, Valve R, et al. Increasing prevalence and high incidence of celiac disease in elderly people: a population-based study. BMC Gastroenterol. 2009;9(1):49. https://doi.org/10.1186/1471-230X-9-49.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lohi S, et al. Increasing prevalence of coeliac disease over time. Aliment Pharmacol Ther. 2007;26(9):1217–25. https://doi.org/10.1111/j.1365-2036.2007.03502.x.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Mustalahti K, Catassi C, Reunanen A, Fabiani E, Heier M, McMillan S, et al. The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med. 2010;42(8):587–95. https://doi.org/10.3109/07853890.2010.505931.

    Article  PubMed  Google Scholar 

  6. 6.

    Catassi C, Kryszak D, Bhatti B, Sturgeon C, Helzlsouer K, Clipp SL, et al. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann Med. 2010;42(7):530–8. https://doi.org/10.3109/07853890.2010.514285.

    Article  PubMed  Google Scholar 

  7. 7.

    Ludvigsson JF, Rubio-Tapia A, van Dyke CT, Melton LJ, Zinsmeister AR, Lahr BD, et al. Increasing incidence of celiac disease in a North American population. Am J Gastroenterol. 2013;108(5):818–24. https://doi.org/10.1038/ajg.2013.60.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Decker E, Hornef M, Stockinger S. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Gut Microbes. 2011;2(2):91–8. https://doi.org/10.4161/gmic.2.2.15414.

    Article  PubMed  Google Scholar 

  9. 9.

    Marild K, et al. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology. 2012;142(1):39–45 e3. https://doi.org/10.1053/j.gastro.2011.09.047.

    Article  PubMed  Google Scholar 

  10. 10.

    • Koletzko S, Lee HS, Beyerlein A, Aronsson CA, Hummel M, Liu E, et al. Caesarean section on the risk of celiac disease in the offspring: the Teddy Study. J Pediatr Gastroenterol Nutr. 2017. Large multicenter European study concluding that C-section deliveries do not carry an incerased risk of celiac disease in the offspring.:1. https://doi.org/10.1097/MPG.0000000000001682.

  11. 11.

    Sevelsted A, Stokholm J, Bonnelykke K, Bisgaard H. Cesarean section and chronic immune disorders. Pediatrics. 2015;135(1):e92–8. https://doi.org/10.1542/peds.2014-0596.

    Article  PubMed  Google Scholar 

  12. 12.

    Kemppainen KM, Lynch KF, Liu E, Lönnrot M, Simell V, Briese T, et al. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin Gastroenterol Hepatol. 2017;15(5):694–702 e5. https://doi.org/10.1016/j.cgh.2016.10.033.

    Article  PubMed  Google Scholar 

  13. 13.

    Myleus A, et al. Early infections are associated with increased risk for celiac disease: an incident case-referent study. BMC Pediatr. 2012;12:194.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Marild K, et al. Infections and risk of celiac disease in childhood: a prospective nationwide cohort study. Am J Gastroenterol. 2015;110(10):1475–84. https://doi.org/10.1038/ajg.2015.287.

    Article  PubMed  Google Scholar 

  15. 15.

    •• Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356(6333):44–50. A ground-breaking research showing for the first time that a virus can actually trigger an inflammatory response potrentially leading to the development of CeD in genetically predisposed individuals. https://doi.org/10.1126/science.aah5298.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    • Kemppainen KM, Vehik K, Lynch KF, Larsson HE, Canepa RJ, Simell V, et al. Association between early-life antibiotic use and the risk of islet or celiac disease autoimmunity. JAMA Pediatr. 2017. Most common antibiotics in early life do not increase the risk of autoimmunity in children at increased genetic risk for celiac disease.;171(12):1217–25. https://doi.org/10.1001/jamapediatrics.2017.2905.

    Article  PubMed  Google Scholar 

  17. 17.

    Marild K, et al. Antibiotic exposure in pregnancy and risk of coeliac disease in offspring: a cohort study. BMC Gastroenterol. 2014;14(1):75. https://doi.org/10.1186/1471-230X-14-75.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Capriati T, Francavilla R, Castellaneta S, Ferretti F, Diamanti A. Impact of the birth's season on the development of celiac disease in Italy. Eur J Pediatr. 2015;174(12):1657–63. https://doi.org/10.1007/s00431-015-2589-2.

    Article  PubMed  Google Scholar 

  19. 19.

    Myleus A, et al. Celiac disease revealed in 3% of Swedish 12-year-olds born during an epidemic. J Pediatr Gastroenterol Nutr. 2009;49(2):170–6. https://doi.org/10.1097/MPG.0b013e31818c52cc.

    Article  PubMed  Google Scholar 

  20. 20.

    Whyte LA, Kotecha S, Watkins WJ, Jenkins HR. Coeliac disease is more common in children with high socio-economic status. Acta Paediatr. 2014;103(3):289–94. https://doi.org/10.1111/apa.12494.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Lionetti E, Castellaneta S, Francavilla R, Pulvirenti A, Tonutti E, Amarri S, et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N Engl J Med. 2014;371(14):1295–303. https://doi.org/10.1056/NEJMoa1400697.

    Article  PubMed  Google Scholar 

  22. 22.

    •• Vriezinga SL, Auricchio R, Bravi E, Castillejo G, Chmielewska A, Crespo Escobar P, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med. 2014;371(14):1304–15. Large, multicenter prospective interventional study on children with genetic risk for celiac disease showing no effect of timing of gluten introduction and no protective effect of breast feeding. https://doi.org/10.1056/NEJMoa1404172.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Silano M, et al. Infant feeding and risk of developing celiac disease: a systematic review. BMJ Open. 2016. 6(1):e009163. https://doi.org/10.1136/bmjopen-2015-009163.

  24. 24.

    Hyytinen M, Savilahti E, Virtanen SM, Härkönen T, Ilonen J, Luopajärvi K, et al. Avoidance of cow’s milk-based formula for at-risk infants does not reduce development of celiac disease: a randomized controlled trial. Gastroenterology. 2017;153(4):961–970 e3. https://doi.org/10.1053/j.gastro.2017.06.049.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Marasco G, di Biase A.R., Schiumerini R., Eusebi L.H., Iughetti L., Ravaioli F., Scaioli E., Colecchia A., Festi D. Gut microbiota and celiac disease. Dig Dis Sci. 2016, 61, 6, 1461, 1472, DOI: https://doi.org/10.1007/s10620-015-4020-2.

  26. 26.

    Ottman N, et al. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012;2:104.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sanz Y, De Pama G, Laparra M. Unraveling the ties between celiac disease and intestinal microbiota. Int Rev Immunol. 2011;30(4):207–18. https://doi.org/10.3109/08830185.2011.599084.

    Article  PubMed  Google Scholar 

  28. 28.

    Galipeau HJ, McCarville JL, Huebener S, Litwin O, Meisel M, Jabri B, et al. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am J Pathol. 2015;185(11):2969–82. https://doi.org/10.1016/j.ajpath.2015.07.018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    •• Sollid LM. The roles of MHC class II genes and post-translational modification in celiac disease. Immunogenetics. 2017;69(8–9):605–16. Authoritative review describing the genetic mapping and involvement of MHC class II genes in disease pathogenesis. https://doi.org/10.1007/s00251-017-0985-7.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Withoff S, Li Y, Jonkers I, Wijmenga C. Understanding celiac disease by genomics. Trends Genet. 2016;32(5):295–308. https://doi.org/10.1016/j.tig.2016.02.003.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Hill ID, Dirks MH, Liptak GS, Colletti RB, Fasano A, Guandalini S, et al. Guideline for the diagnosis and treatment of celiac disease in children: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr. 2005;40(1):1–19. https://doi.org/10.1097/00005176-200501000-00001.

    Article  PubMed  Google Scholar 

  32. 32.

    Rubio-Tapia A, Hill ID, Kelly CP, Calderwood AH, Murray JA, American College of Gastroenterology. ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol. 2013;108(5):656–76; quiz 677. https://doi.org/10.1038/ajg.2013.79.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Giersiepen K, Lelgemann M, Stuhldreher N, Ronfani L, Husby S, Koletzko S, et al. Accuracy of diagnostic antibody tests for coeliac disease in children: summary of an evidence report. J Pediatr Gastroenterol Nutr. 2012;54(2):229–41. https://doi.org/10.1097/MPG.0b013e318216f2e5.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Chow MA, Lebwohl B, Reilly NR, Green PHR. Immunoglobulin A deficiency in celiac disease. J Clin Gastroenterol. 2012;46(10):850–4. https://doi.org/10.1097/MCG.0b013e31824b2277.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Dahlbom I, Olsson M, Forooz NK, Sjöholm AG, Truedsson L, Hansson T. Immunoglobulin G (IgG) anti-tissue transglutaminase antibodies used as markers for IgA-deficient celiac disease patients. Clin Diagn Lab Immunol. 2005;12(2):254–8. https://doi.org/10.1128/CDLI.12.2.254-258.2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Korponay-Szabo IR, et al. Elevation of IgG antibodies against tissue transglutaminase as a diagnostic tool for coeliac disease in selective IgA deficiency. Gut. 2003;52(11):1567–71. https://doi.org/10.1136/gut.52.11.1567.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Villalta D, Alessio MG, Tampoia M, Tonutti E, Brusca I, Bagnasco M, et al. Testing for IgG class antibodies in celiac disease patients with selective IgA deficiency. A comparison of the diagnostic accuracy of 9 IgG anti-tissue transglutaminase, 1 IgG anti-gliadin and 1 IgG anti-deaminated gliadin peptide antibody assays. Clin Chim Acta. 2007;382(1–2):95–9. https://doi.org/10.1016/j.cca.2007.03.028.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Villalta D, Tonutti E, Prause C, Koletzko S, Uhlig HH, Vermeersch P, et al. IgG antibodies against deamidated gliadin peptides for diagnosis of celiac disease in patients with IgA deficiency. Clin Chem. 2010;56(3):464–8. https://doi.org/10.1373/clinchem.2009.128132.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    •• Husby S, Koletzko S, Korponay-Szabó IR, Mearin ML, Phillips A, Shamir R, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012;54(1):136–60. Most recent evidence-based guidelines by the European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) represent the diagnostic approach currently followed worldwide in children. https://doi.org/10.1097/MPG.0b013e31821a23d0.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Holmes GKT, Forsyth JM, Knowles S, Seddon H, Hill PG, Austin AS. Coeliac disease: further evidence that biopsy is not always necessary for diagnosis. Eur J Gastroenterol Hepatol. 2017;29(6):640–5. https://doi.org/10.1097/MEG.0000000000000841.

    Article  PubMed  Google Scholar 

  41. 41.

    •• Hill ID, Fasano A, Guandalini S, Hoffenberg E, Levy J, Reilly N, et al. NASPGHAN clinical report on the diagnosis and treatment of gluten-related disorders. J Pediatr Gastroenterol Nutr. 2016;63(1):156–65. Most recent document from the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN) providing recommendations for a correct diagnostic approach not only to celiac disease, but also to wehat allergy and “Non-celiac Gluten Sensitivity”. https://doi.org/10.1097/MPG.0000000000001216.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    • Werkstetter KJ, Korponay-Szabó IR, Popp A, Villanacci V, Salemme M, Heilig G, et al. Accuracy in diagnosis of celiac disease without biopsies in clinical practice. Gastroenterology. 2017;153(4):924–35. Large multicenter study providing robust support for the validity of the ESPGHAN diagnostic guidelines. https://doi.org/10.1053/j.gastro.2017.06.002.

    Article  PubMed  Google Scholar 

  43. 43.

    Guandalini S, Newland C. Can we really skip the biopsy in diagnosing symptomatic children with celiac disease. J Pediatr Gastroenterol Nutr. 2013;57(4):e24–5. https://doi.org/10.1097/MPG.0b013e3182a1cda3.

    Article  PubMed  Google Scholar 

  44. 44.

    Leonard MM, Weir DC, DeGroote M, Mitchell PD, Singh P, Silvester JA, et al. Value of IgA tTG in predicting mucosal recovery in children with celiac disease on a gluten-free diet. J Pediatr Gastroenterol Nutr. 2017;64(2):286–91. https://doi.org/10.1097/MPG.0000000000001460.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Koletzko S. No need for routine endoscopy in children with celiac disease on a gluten-free diet. J Pediatr Gastroenterol Nutr. 2017;65(3):267–9. https://doi.org/10.1097/MPG.0000000000001628.

    Article  PubMed  Google Scholar 

  46. 46.

    • Silvester JA, Kurada S, Szwajcer A, Kelly CP, Leffler DA, Duerksen DR. Tests for serum transglutaminase and endomysial antibodies do not detect most patients with celiac disease and persistent villous atrophy on gluten-free diets: a meta-analysis. Gastroenterology. 2017;153(3):689–701 e1. Positive serum transglutaminase (TTG) and endomysial antibodies (EMA) while very specific for persisting villous atrophy are only 50% sensitive in adult patients. https://doi.org/10.1053/j.gastro.2017.05.015.

    Article  PubMed  Google Scholar 

  47. 47.

    • Lau MS, Mooney PD, White WL, Rees MA, Wong SH, Kurien M, et al. The role of an IgA/IgG-deamidated gliadin peptide point-of-care test in predicting persistent villous atrophy in patients with celiac disease on a gluten-free diet. Am J Gastroenterol. 2017. A point of care testing using deamidated gliadin peptides (DGP) has higher sensitivity than the other surrogate markers in predicting villopus atrophy in adult patients with celiac disease on a gluten-free diet;112(12):1859–67. https://doi.org/10.1038/ajg.2017.357.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Haere P, et al. Long-term mucosal recovery and healing in celiac disease is the rule - not the exception. Scand J Gastroenterol. 2016;51(12):1439–46. https://doi.org/10.1080/00365521.2016.1218540.

    Article  PubMed  Google Scholar 

  49. 49.

    Lebwohl B, Murray JA, Rubio-Tapia A, Green PHR, Ludvigsson JF. Predictors of persistent villous atrophy in coeliac disease: a population-based study. Aliment Pharmacol Ther. 2014;39(5):488–95. https://doi.org/10.1111/apt.12621.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    •• Comino I, Fernández-Bañares F, Esteve M, Ortigosa L, Castillejo G, Fambuena B, et al. Fecal gluten peptides reveal limitations of serological tests and food questionnaires for monitoring gluten-free diet in celiac disease patients. Am J Gastroenterol. 2016;111(10):1456–65. A new test able to detect the presence of gliadin peptides (hence, of gluten ingestion) in the stools or urine of celiac patients on gluten-free diet. A very promising tool for the clinician. https://doi.org/10.1038/ajg.2016.439.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Bascunan KA, Vespa MC, Araya M. Celiac disease: understanding the gluten-free diet. Eur J Nutr. 2017;56(2):449–59. https://doi.org/10.1007/s00394-016-1238-5.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Newberry C, McKnight L, Sarav M, Pickett-Blakely O. Going gluten free: the history and nutritional implications of today’s most popular diet. Curr Gastroenterol Rep. 2017;19(11):54. https://doi.org/10.1007/s11894-017-0597-2.

    Article  PubMed  Google Scholar 

  53. 53.

    Dickey W, Kearney N. Overweight in celiac disease: prevalence, clinical characteristics, and effect of a gluten-free diet. Am J Gastroenterol. 2006;101(10):2356–9. https://doi.org/10.1111/j.1572-0241.2006.00750.x.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Babio N, Alcázar M, Castillejo G, Recasens M, Martínez-Cerezo F, Gutiérrez-Pensado V, et al. Patients with celiac disease reported higher consumption of added sugar and total fat than healthy individuals. J Pediatr Gastroenterol Nutr. 2017;64(1):63–9. https://doi.org/10.1097/MPG.0000000000001251.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Miranda J, Lasa A, Bustamante MA, Churruca I, Simon E. Nutritional differences between a gluten-free diet and a diet containing equivalent products with gluten. Plant Foods Hum Nutr. 2014;69(2):182–7. https://doi.org/10.1007/s11130-014-0410-4.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Foschia M, Horstmann S, Arendt EK, Zannini E. Nutritional therapy—facing the gap between coeliac disease and gluten-free food. Int J Food Microbiol. 2016;239:113–24. https://doi.org/10.1016/j.ijfoodmicro.2016.06.014.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    •• Snyder J, Butzner JD, DeFelice AR, Fasano A, Guandalini S, Liu E, et al. Evidence-informed expert recommendations for the management of celiac disease in children. Pediatrics. 2016;138(3). pii:e20153147. Recommendations for follow-up of celiac children by a task panel of experts.) https://doi.org/10.1542/peds.2015-3147. Epub 2016 Aug 26.

  58. 58.

    Sansotta, N., et al. Celiac disease symptom resolution: effectiveness of the gluten free diet. J Pediatr Gastroenterol Nutr. 2018 Jan;66(1):48–52. https://doi.org/10.1097/MPG.0000000000001634. PubMed PMID: 28514243.

  59. 59.

    Jericho H, Sansotta N, Guandalini S. Extraintestinal manifestations of celiac disease: effectiveness of the gluten-free diet. J Pediatr Gastroenterol Nutr. 2017;65(1):75–9. https://doi.org/10.1097/MPG.0000000000001420.

    Article  PubMed  Google Scholar 

  60. 60.

    Shah S, Akbari M, Vanga R, Kelly CP, Hansen J, Theethira T, et al. Patient perception of treatment burden is high in celiac disease compared with other common conditions. Am J Gastroenterol. 2014;109(9):1304–11. https://doi.org/10.1038/ajg.2014.29.

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Guandalini S, Tundia N, Thakkar R, Macaulay D, Essenmacher K, Fuldeore M. Direct costs in patients with celiac disease in the USA: a retrospective claims analysis. Dig Dis Sci. 2016;61(10):2823–30. https://doi.org/10.1007/s10620-016-4219-x.

    Article  PubMed  Google Scholar 

  62. 62.

    • Kurada S, Yadav A, Leffler DA. Current and novel therapeutic strategies in celiac disease. Expert Rev Clin Pharmacol. 2016;9(9):1211–23. Systematic review of novel therapeutics for celiac disease. https://doi.org/10.1080/17512433.2016.1200463.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, et al. Structural basis for gluten intolerance in celiac sprue. Science. 2002;297(5590):2275–9. https://doi.org/10.1126/science.1074129.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Pinier M, Verdu EF, Nasser–Eddine M, David CS, Vézina A, Rivard N, et al. Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology. 2009;136(1):288–98. https://doi.org/10.1053/j.gastro.2008.09.016.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Gopalakrishnan S, Tripathi A, Tamiz AP, Alkan SS, Pandey NB. Larazotide acetate promotes tight junction assembly in epithelial cells. Peptides. 2012;35(1):95–101. https://doi.org/10.1016/j.peptides.2012.02.016.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Rauhavirta T, Oittinen M, Kivistö R, Männistö PT, Garcia-Horsman JA, Wang Z, et al. Are transglutaminase 2 inhibitors able to reduce gliadin-induced toxicity related to celiac disease? A proof-of-concept study. J Clin Immunol. 2013;33(1):134–42. https://doi.org/10.1007/s10875-012-9745-5.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Kapoerchan VV, Wiesner M, Overhand M, van der Marel GA, Koning F, Overkleeft HS. Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with celiac disease. Bioorg Med Chem. 2008;16(4):2053–62. https://doi.org/10.1016/j.bmc.2007.10.091.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Waldmann TA, Conlon KC, Stewart DM, Worthy TA, Janik JE, Fleisher TA, et al. Phase 1 trial of IL-15 trans presentation blockade using humanized Mikbeta1 mAb in patients with T-cell large granular lymphocytic leukemia. Blood. 2013;121(3):476–84. https://doi.org/10.1182/blood-2012-08-450585.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med. 2010;2(41):41ra51. https://doi.org/10.1126/scitranslmed.3001012.

    Article  PubMed  Google Scholar 

  70. 70.

    Lahdeaho ML, et al. Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology. 2014;146(7):1649–58. https://doi.org/10.1053/j.gastro.2014.02.031.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Murray JA, Kelly CP, Green PHR, Marcantonio A, Wu TT, Mäki M, et al. No difference between latiglutenase and placebo in reducing villous atrophy or improving symptoms in patients with symptomatic celiac disease. Gastroenterology. 2017;152(4):787–98 e2. https://doi.org/10.1053/j.gastro.2016.11.004.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    • Syage JA, Murray JA, Green PHR, Khosla C. Latiglutenase improves symptoms in seropositive celiac disease patients while on a gluten-free diet. Dig Dis Sci. 2017. Evidence of efficacy for a gluten-detoxifying agent (latiglutenase) in the subset of celiac patients on gluten-free diet with persistent symptoms and positive serology.;62(9):2428–32. https://doi.org/10.1007/s10620-017-4687-7.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    • Leffler DA, Kelly CP, Green PHR, Fedorak RN, DiMarino A, Perrow W, et al. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology. 2015;148(7):1311–9 e6. Larazotide strengthens tight junctions and improves symptoms in adult celiac patients. https://doi.org/10.1053/j.gastro.2015.02.008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    McCarville JL, Nisemblat Y, Galipeau HJ, Jury J, Tabakman R, Cohen A, et al. BL-7010 demonstrates specific binding to gliadin and reduces gluten-associated pathology in a chronic mouse model of gliadin sensitivity. PLoS One. 2014;9(11):e109972. https://doi.org/10.1371/journal.pone.0109972.

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    •• Goel G, King T, Daveson AJ, Andrews JM, Krishnarajah J, Krause R, et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac disease: two randomised, double-blind, placebo-controlled phase 1 studies. Lancet Gastroenterol Hepatol. 2017;2(7):479–93. The latest report on the therapeutic vaccine for celiac disease: Nexvax2. https://doi.org/10.1016/S2468-1253(17)30110-3.

    Article  PubMed  Google Scholar 

  76. 76.

    De Angelis M, et al. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for celiac sprue. Biochim Biophys Acta. 2006;1762(1):80–93. https://doi.org/10.1016/j.bbadis.2005.09.008.

    Article  PubMed  Google Scholar 

  77. 77.

    Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J, Mäki M, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152(3):552–8. https://doi.org/10.1111/j.1365-2249.2008.03635.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Smecuol E, Hwang HJ, Sugai E, Corso L, Cherñavsky AC, Bellavite FP, et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol. 2013;47(2):139–47. https://doi.org/10.1097/MCG.0b013e31827759ac.

    Article  PubMed  Google Scholar 

  79. 79.

    Nazareth S, Lebhwohl B, Voyksner J, Green PH. Widespread contamination of probiotics with gluten, detected by liquid chromatography-mass spectrometry. Gastroenterology. 2015;148(4):S–28. https://doi.org/10.1016/S0016-5085(15)30097-4.

    Article  Google Scholar 

  80. 80.

    Helmby H. Human helminth therapy to treat inflammatory disorders—where do we stand? BMC Immunol. 2015;16(1):12. https://doi.org/10.1186/s12865-015-0074-3.

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Croese J, Giacomin P, Navarro S, Clouston A, McCann L, Dougall A, et al. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J Allergy Clin Immunol. 2015;135(2):508–16. https://doi.org/10.1016/j.jaci.2014.07.022.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Giacomin P, Zakrzewski M, Croese J, Su X, Sotillo J, McCann L, et al. Experimental hookworm infection and escalating gluten challenges are associated with increased microbial richness in celiac subjects. Sci Rep. 2015;5(1):13797. https://doi.org/10.1038/srep13797.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Tomal J, McKiernan D, Guandalini S, Semrad CE, Kupfer S. Celiac patients’ attitudes regarding novel therapies. Minerva Gastroenterol Dietol. 2016;62(4):275–80.

    PubMed  Google Scholar 

  84. 84.

    Branchi F, Tomba C, Ferretti F, Norsa L, Roncoroni L, Bardella MT, et al. Celiac disease and drug-based therapies: inquiry into patients demands. Digestion. 2016;93(2):160–6. https://doi.org/10.1159/000441697.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    McCarville JL, Caminero A, Verdu EF. Pharmacological approaches in celiac disease. Curr Opin Pharmacol. 2015;25:7–12. https://doi.org/10.1016/j.coph.2015.09.002.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Stefano Guandalini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Gastrology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jericho, H., Guandalini, S. Celiac Disease. Curr Pediatr Rep 6, 40–49 (2018). https://doi.org/10.1007/s40124-018-0154-y

Download citation


  • Celiac
  • Gluten
  • Gliadin