Skip to main content

Advertisement

Log in

The Intestinal Microbiome and Childhood Obesity

  • Obesity (S Armstrong and A Patel, Section Editors)
  • Published:
Current Pediatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pediatric obesity has reached epidemic proportions worldwide. The community of microbes inhabiting the human intestine affects differential nutrient absorption, metabolism, and weight status. However, the majority of our knowledge is derived from animal models and adults with obesity. This review discusses the role of the intestinal microbiome in the development and modification of pediatric obesity, with a focus on opportunities for modification of the microbiome through alteration of environmental factors.

Recent Findings

Recent evidence suggests that obesity is associated with phylogenetic changes in the gut microbiome, yet most of what we know about the role of the microbiome and obesity is from research on adults. A vast number of variables influence the gut microbial ecology early in life, including maternal weight status, breastfeeding, dietary manipulation, antibiotic exposure, and pre/probiotic use. Both in experimental animal and human studies, advances in genomic, proteomic, and metabolomics technologies have expanded our capacity to understand the composition and phenotype of the gut microbiome and mechanistic factors that modulate human health.

Summary

The human intestinal microbiome is associated with both the environment and child obesity. Understanding the mechanisms behind microbial regulation of human metabolism during infancy and childhood is key to developing effective prevention and treatment of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA. 2016;315:2292–9.

    Article  CAS  PubMed  Google Scholar 

  2. Skinner AC, Perrin EM, Skelton JA. Prevalence of obesity and severe obesity in US children, 1999-2014. Obesity (Silver Spring). 2016;24:1116–23.

    Article  Google Scholar 

  3. Whitlock EP, O'Conner EA, Williams SB, Beil TL, Lutz KW. U.S. preventive services task force evidence syntheses, formerly systematic evidence reviews, effectiveness of primary care interventions for weight Management in Children and Adolescents: an updated, targeted systematic review for the USPSTF. Rockville (MD): Agency for Healthcare Research and Quality (US); 2010.

    Google Scholar 

  4. Kuchnia A, Huizenga R, Frankenfield D, Matthie JR, Earthman CP. Overstated metabolic adaptation after “the biggest loser” intervention. Obesity (Silver Spring). 2016;24:2025.

    Article  Google Scholar 

  5. •• Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79. This review is the most up-to-date and detailed summary of evidence for what is known about the human intestinal microbiome and health.

  6. Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36.

    Article  PubMed  PubMed Central  Google Scholar 

  7. • Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol. 2017;19:95–105. This paper is the first to demonstrate significant differences in the intestinal microbiome between obese and healthy weight pediatric individuals.

  8. Valsecchi C, Carlotta Tagliacarne S, Castellazzi A. 2016. Gut microbiota and obesity. J Clin Gastroenterol 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13–15, 2015:S157-S158.

  9. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  CAS  PubMed  Google Scholar 

  11. • Seganfredo FB, Blume CA, Moehlecke M, Giongo A, Casagrande DS, Spolidoro JVN, et al. Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obes Rev. 2017; doi:10.1111/obr.12541. This paper provides evidence that changes in lifestyle correlate with changes in the intestinal microbiome.

  12. Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, Vanamala J, et al. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology. 2014;146:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wexler AG, Goodman AL. An insider’s perspective: bacteroides as a window into the microbiome. Nat Microbiol. 2017;2:17026.

    Article  CAS  PubMed  Google Scholar 

  14. Gao X, Jia R, Xie L, Kuang L, Feng L, Wan C. Obesity in school-aged children and its correlation with gut E. coli and Bifidobacteria: a case-control study. BMC Pediatr. 2015;15:64.

  15. Bergstrom A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014;80:2889–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicolucci AC, Hume MP, Martinez I, Mayengbam S, Walter J, Reimer RA. Prebiotic reduces body fat and alters intestinal microbiota in children with overweight or obesity. Gastroenterology. 2017; doi:10.1053/j.gastro.2017.05.055.

  17. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    Article  CAS  PubMed  Google Scholar 

  18. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    Article  PubMed  Google Scholar 

  19. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, et al. 2016. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351.

  20. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams JE, Price WJ, Shafii B, Yahvah KM, Bode L, McGuire MA, et al. Relationships among microbial communities, maternal cells, oligosaccharides, and macronutrients in human milk. J Hum Lact. 2017; doi:10.1177/0890334417709433:890334417709433.

  22. Munthali RJ, Kagura J, Lombard Z, Norris SA. Early life growth predictors of childhood adiposity trajectories and future risk for obesity: birth to twenty cohort. Child Obes. 2017; doi:10.1089/chi.2016.0310.

  23. Groer MW, Gregory KE, Louis-Jacques A, Thibeau S, Walker WA. The very low birth weight infant microbiome and childhood health. Birth Defects Res C Embryo Today. 2015;105:252–64.

    Article  CAS  PubMed  Google Scholar 

  24. Smithers LG, Mol BW, Jamieson L, Lynch JW. Cesarean birth is not associated with early childhood body mass index. Pediatr Obes. 2016; doi:10.1111/ijpo.12180.

  25. Rutayisire E, Wu X, Huang K, Tao S, Chen Y, Tao F. Cesarean section may increase the risk of both overweight and obesity in preschool children. BMC Pregnancy Childbirth. 2016;16:338.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Blustein J, Attina T, Liu M, Ryan AM, Cox LM, Blaser MJ, et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes. 2013;37:900–6.

    Article  CAS  Google Scholar 

  27. Bernardi JR, Pinheiro TV, Mueller NT, Goldani HA, Gutierrez MR, Bettiol H, et al. Cesarean delivery and metabolic risk factors in young adults: a Brazilian birth cohort study. Am J Clin Nutr. 2015;102:295–301.

    Article  CAS  PubMed  Google Scholar 

  28. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015;21:109–17.

    Article  PubMed  Google Scholar 

  29. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23:314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lefebvre CM, John RM. The effect of breastfeeding on childhood overweight and obesity: a systematic review of the literature. J Am Assoc Nurse Pract. 2014;26:386–401.

    PubMed  Google Scholar 

  31. Bell KA, Wagner CL, Feldman HA, Shypailo RJ, Belfort MB. Associations of infant feeding with trajectories of body composition and growth. Am J Clin Nutr. 2017; doi:10.3945/ajcn.116.151126.

  32. Piccolo BD, Mercer KE, Bhattacharya S, Bowlin AK, Saraf MK, Pack L, et al. Early postnatal diets affect the bioregional small intestine microbiome and ileal metabolome in neonatal pigs. J Nutr. 2017; doi:10.3945/jn.117.252767.

  33. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017; doi:10.1001/jamapediatrics.2017.0378.

  34. Scott FI, Mamtani R. Antibiotics and obesity—a burgeoning or thinning argument? JAMA Pediatr. 2017;171:118–20.

    Article  PubMed  Google Scholar 

  35. Korpela K, Zijlmans MA, Kuitunen M, Kukkonen K, Savilahti E, Salonen A, et al. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome. 2017;5:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat Rev Endocrinol. 2015;11:182–90.

    Article  PubMed  Google Scholar 

  37. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reijnders D, Goossens GH, Hermes GD, Neis EP, van der Beek CM, Most J, et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 2016;24:63–74.

    Article  CAS  PubMed  Google Scholar 

  39. Gerber JS, Bryan M, Ross RK, Daymont C, Parks EP, Localio AR, et al. Antibiotic exposure during the first 6 months of life and weight gain during childhood. JAMA. 2016;315:1258–65.

    Article  CAS  Google Scholar 

  40. Ajslev TA, Andersen CS, Gamborg M, Sorensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes. 2011;35:522–9.

    Article  CAS  Google Scholar 

  41. Howarth GS, Wang H. Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients. 2013;5:58–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rondanelli M, Faliva MA, Perna S, Giacosa A, Peroni G, Castellazzi AM. Using probiotics in clinical practice: where are we now? A review of existing meta-analyses. Gut Microbes. 2017; doi:10.1080/19490976.2017.1345414:0.

  43. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64.

    Article  CAS  PubMed  Google Scholar 

  44. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.

    Article  CAS  PubMed  Google Scholar 

  45. Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15:1546–58.

    Article  CAS  PubMed  Google Scholar 

  46. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr. 2009;90:1236–43.

    Article  CAS  PubMed  Google Scholar 

  48. Schele E, Grahnemo L, Anesten F, Hallen A, Backhed F, Jansson JO. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology. 2013;154:3643–51.

    Article  CAS  PubMed  Google Scholar 

  49. Duca FA, Swartz TD, Sakar Y, Covasa M. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS One. 2012;7:e39748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science. 2010;328:228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Armstrong.

Ethics declarations

Conflict of Interest

Jessica McCann, Patrick Seed, and Sarah Armstrong declare that they have no conflicts of interest.

John Rawls reports grants from National Institutes of Health during the conduct of the study. In addition, Dr. Rawls has a patent PCT/US16/22958 pending, and a patent US11/080,755 issued.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCann, J., Rawls, J., Seed, P. et al. The Intestinal Microbiome and Childhood Obesity. Curr Pediatr Rep 5, 150–155 (2017). https://doi.org/10.1007/s40124-017-0140-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40124-017-0140-9

Keywords

Navigation