Skip to main content

Advertisement

Log in

Childhood Acute Lymphoblastic Leukemia: Toward Personalized Medicine

  • Hematology/Oncology (C Cole, Section Editor)
  • Published:
Current Pediatrics Reports Aims and scope Submit manuscript

Abstract

Remarkable improvements in survival rates have made childhood acute lymphoblastic leukemia (ALL) a success story within pediatric oncology. The excellent outcomes for many patients with ALL have resulted in part from risk stratification based on well-established clinical and disease features of prognostic significance. Despite the progress that has been observed, relapses occur unpredictably, and treatment can be associated with acute and long-term toxicity. This has prompted efforts to better tailor ALL therapy in individual patients. In recent years, there has been a growing expansion in our knowledge of underlying disease biology as well as inherent patient characteristics, and this has contributed to a movement toward more personalized ALL therapy. In this article, we have focused on examples of how comprehensive genomic analyses are being utilized to individualize childhood ALL treatment as well as how these analyses may be further leveraged in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol. 2012;30(14):1663–9. doi:10.1200/JCO.2011.37.8018. Outcomes for children and adolescents with ALL treated on COG studies continues to improve. However, a significant number of deaths still occur in patients with NCI SR disease.

  2. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood. 2008;111(12):5477–85. doi:10.1182/blood-2008-01-132837.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grümayer R, Möricke A, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115(16):3206–14. doi:10.1182/blood-2009-10-248146.

    Article  CAS  PubMed  Google Scholar 

  4. Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, Borowitz MJ, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood. 2007;109(3):926–35. doi:10.1182/blood-2006-01-024729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Uckun FM, Nachman JB, Sather HN, Sensel MG, Kraft P, Steinherz PG, et al. Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children’s Cancer Group. Cancer. 1998;83(9):2030–9.

    Article  CAS  PubMed  Google Scholar 

  6. • Heerema NA, Carroll AJ, Devidas M, Loh ML, Borowitz MJ, Gastier-Foster JM et al. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children’s oncology group studies: a report from the children’s oncology group. J Clin Oncol. 2013;31(27):3397–402. doi:10.1200/JCO.2013.49.1308. This paper describes the outcomes of patients whose leukemic blasts harbor the relatively recently described iAPMP21, and demonstrates improved outcomes with more intensive therapy.

  7. Conter V, Aricò M, Basso G, Biondi A, Barisone E, Messina C, et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):255–64. doi:10.1038/leu.2009.250.

    Article  CAS  PubMed  Google Scholar 

  8. Kamps WA, van der Pal-de Bruin KM, Veerman AJ, Fiocco M, Bierings M, Pieters R. Long-term results of Dutch Childhood Oncology Group studies for children with acute lymphoblastic leukemia from 1984 to 2004. Leukemia. 2010;24(2):309–19. doi:10.1038/leu.2009.258.

  9. Mitchell C, Richards S, Harrison CJ, Eden T. Long-term follow-up of the United Kingdom medical research council protocols for childhood acute lymphoblastic leukaemia, 1980-2001. Leukemia. 2010;24(2):406–18. doi:10.1038/leu.2009.256.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Möricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24(2):265–84. doi:10.1038/leu.2009.257.

    Article  PubMed  Google Scholar 

  11. Pui CH, Pei D, Sandlund JT, Ribeiro RC, Rubnitz JE, Raimondi SC, et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):371–82. doi:10.1038/leu.2009.252.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Schmiegelow K, Forestier E, Hellebostad M, Heyman M, Kristinsson J, Söderhäll S, et al. Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):345–54. doi:10.1038/leu.2009.251.

    Article  CAS  PubMed  Google Scholar 

  13. Silverman LB, Stevenson KE, O’Brien JE, Asselin BL, Barr RD, Clavell L, et al. Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985-2000). Leukemia. 2010;24(2):320–34. doi:10.1038/leu.2009.253.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43. doi:10.1016/S0140-6736(08)60457-2.

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen K, Devidas M, Cheng SC, La M, Raetz EA, Carroll WL, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia. 2008;22(12):2142–50. doi:10.1038/leu.2008.251.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bernt KM, Hunger SP. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol. 2014;4:54. doi:10.3389/fonc.2014.00054.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gaynon PS, Trigg ME, Heerema NA, Sensel MG, Sather HN, Hammond GD, et al. Children’s Cancer Group trials in childhood acute lymphoblastic leukemia: 1983-1995. Leukemia. 2000;14(12):2223–33.

    Article  CAS  PubMed  Google Scholar 

  18. Maloney KW, Shuster JJ, Murphy S, Pullen J, Camitta BA. Long-term results of treatment studies for childhood acute lymphoblastic leukemia: Pediatric Oncology Group studies from 1986-1994. Leukemia. 2000;14(12):2276–85.

    Article  CAS  PubMed  Google Scholar 

  19. Aricò M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342(14):998–1006. doi:10.1056/NEJM200004063421402.

    Article  PubMed  Google Scholar 

  20. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346(9):645–52. doi:10.1056/NEJMoa011573.

    Article  CAS  PubMed  Google Scholar 

  21. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344(14):1038–42. doi:10.1056/NEJM200104053441402.

    Article  CAS  PubMed  Google Scholar 

  22. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol. 2009;27(31):5175–81. doi:10.1200/JCO.2008.21.2514.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. •• Schultz KR, Carroll A, Heerema NA, Bowman WP, Aledo A, Slayton WB et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia. 2014;28(7):1467–71. doi:10.1038/leu.2014.30. This report confirms excellent 5-year outcomes for patients with Ph+ ALL treated with imatinib plus chemotherapy, and reveals no benefit of HCT in first remission.

  24. •• Biondi A, Schrappe M, De Lorenzo P, Castor A, Lucchini G, Gandemer V et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol. 2012;13(9):936–45. doi:10.1016/S1470-2045(12)70377-7. In this study for patients with Ph+ ALL, good-risk (based on disease response) patients were randomized to chemotherapy +/− imatinib, and all high-risk patients were assigned to chemotherapy + imatinib. This study reinforces the importance of a TKI with chemotherapy for all patients with Ph + ALL.

  25. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–64. doi:10.1038/nature05690.

    Article  CAS  PubMed  Google Scholar 

  26. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. doi:10.1056/NEJMoa0808253.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34. doi:10.1016/S1470-2045(08)70339-5.

    Article  Google Scholar 

  28. • Loh ML, Mullighan CG. Advances in the genetics of high-risk childhood B-progenitor acute lymphoblastic leukemia and juvenile myelomonocytic leukemia: implications for therapy. Clin Cancer Res. 2012;18(10):2754–67. doi:10.1158/1078-0432.CCR-11-1936. This provides an overview of the genetics of HR B-ALL, as well as potential therapeutic targets.

  29. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–4. doi:10.1038/nature06866.

    Article  CAS  PubMed  Google Scholar 

  30. Harvey RC, Mullighan CG, Chen IM, Wharton W, Mikhail FM, Carroll AJ, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010;115(26):5312–21. doi:10.1182/blood-2009-09-245944.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mullighan CG, Collins-Underwood JR, Phillips LA, Loudin MG, Liu W, Zhang J, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243–6. doi:10.1038/ng.469.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood. 2009;114(13):2688–98. doi:10.1182/blood-2009-03-208397.

    Article  CAS  PubMed  Google Scholar 

  33. Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2009;106(23):9414–8. doi:10.1073/pnas.0811761106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Brown VI, Hulitt J, Fish J, Sheen C, Bruno M, Xu Q, et al. Thymic stromal-derived lymphopoietin induces proliferation of pre-B leukemia and antagonizes mTOR inhibitors, suggesting a role for interleukin-7Ralpha signaling. Cancer Res. 2007;67(20):9963–70. doi:10.1158/0008-5472.CAN-06-4704.

    Article  CAS  PubMed  Google Scholar 

  35. Brown VI, Seif AE, Reid GS, Teachey DT, Grupp SA. Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunol Res. 2008;42(1–3):84–105. doi:10.1007/s12026-008-8038-9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. •• Tasian SK, Doral MY, Borowitz MJ, Wood BL, Chen IM, Harvey RC et al. Aberrant STAT5 and PI3 K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood. 2012;120(4):833–42. doi:10.1182/blood-2011-12-389932. Increased signal transduction in both the JAK/STAT and PI3K/mTOR pathways is seen in primary ALL samples with CRLF2 rearrangements, and this signaling can be suppressed by treatment with appropriate signal transduction inhibitors.

  37. • Tasian S, Loh M, Rabin K, Brown P, Ahern C, Weigel B et al. A phase I study of ruxolitinib in children with relapsed/refractory solid tumors, leukemias, or myeloproliferative neoplasms: A Children’s Oncology Group Phase I Consortium study (ADVL1011). ASCO Annual Meeting. 2014;32:10019. This study established the safety of ruxolitinib in a pediatric population, and established the recommended phase 2 dose.

  38. •• Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153–66. doi:10.1016/j.ccr.2012.06.005. Using primary samples from patients with Ph-like ALL, aberrations were identified in several genes involved in kinase signaling, and these alterations can lead to transformation of cells. Importantly, that transformation was able to be offset by treatment with tyrosine kinase inhibitors.

  39. •• Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–15. doi:10.1056/NEJMoa1403088. This is a genomic analysis of a large number of primary Ph-like ALL samples. Investigators identified a large number of alterations that activate numerous signaling pathways. This activation could be abrogated using TKIs, suggesting an important clinical application for TKIs in patients whose blasts harbor targetable kinase gene mutations.

  40. • Harvey R, Kang H, Roberts K, Chen I-M, Atlas S, Bedrick E et al. Development and validation of a highly sensitive and specific gene expression classifier to prospectively screen and identify B-precursor acute lymphoblastic leukemia (ALL) patients with a Philadelphia Chromosome-Like (Ph-like or BCR-ABL-like) signature for therapeutic targeting and clinical intervention. ASH Meeting Abstracts. 2013;122:826. This abstract describes the development of a low-density microarray card that has the potential to identify patients with Ph-like ALL in real-time, and to allow for incorporation of TKIs into their therapy at an early stage.

  41. Weston BW, Hayden MA, Roberts KG, Bowyer S, Hsu J, Fedoriw G, et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31(25):e413–6. doi:10.1200/JCO.2012.47.6770.

    Article  PubMed  Google Scholar 

  42. Lengline E, Beldjord K, Dombret H, Soulier J, Boissel N, Clappier E. Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lymphoblastic leukemia with EBF1-PDGFRB fusion. Haematologica. 2013;98(11):e146–8. doi:10.3324/haematol.2013.095372.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Trevino LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1001–5. doi:10.1038/ng.432.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1006–10. doi:10.1038/ng.430.

    Article  CAS  PubMed  Google Scholar 

  45. Prasad RB, Hosking FJ, Vijayakrishnan J, Papaemmanuil E, Koehler R, Greaves M, et al. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood. 2010;115(9):1765–7. doi:10.1182/blood-2009-09-241513.

    Article  CAS  PubMed  Google Scholar 

  46. Sherborne AL, Hosking FJ, Prasad RB, Kumar R, Koehler R, Vijayakrishnan J, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet. 2010;42(6):492–4. doi:10.1038/ng.585.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Xu H, Yang W, Perez-Andreu V, Devidas M, Fan Y, Cheng C, et al. Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst. 2013;105(10):733–42. doi:10.1093/jnci/djt042.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. • Yang JJ, Cheng C, Yang W, Pei D, Cao X, Fan Y et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA. 2009;301(4):393–403. doi:10.1001/jama.2009.7. This study identified single-nucleotide polymorphisms (SNPs) associated with risk of minimal residual disease after remission induction, providing insight into interindividual variability in treatment response.

  49. •• Xu H, Cheng C, Devidas M, Pei D, Fan Y, Yang W et al. ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol. 2012;30(7):751–7. doi:10.1200/JCO.2011.38.0345. This study determined the relationship between ARID5B polymorphisms and relapse risk and observed that risk alleles were more frequent in Hispanics. This study concluded that ARID5B polymorphisms are associated with treatment outcomes as well as ALL susceptibility and they contribute to racial disparities in ALL outcomes.

  50. Perez-Andreu V, Roberts KG, Xu H, Smith C, Zhang H, Yang W, et al. A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood. 2014;. doi:10.1182/blood-2014-09-595744.

    PubMed  Google Scholar 

  51. Perez-Andreu V, Roberts KG, Harvey RC, Yang W, Cheng C, Pei D, et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet. 2013;45(12):1494–8. doi:10.1038/ng.2803.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. • Fernandez CA, Smith C, Yang W, Date M, Bashford D, Larsen E et al. HLA-DRB1*07:01 is associated with a higher risk of asparaginase allergies. Blood. 2014;124(8):1266–76. doi:10.1182/blood-2014-03-563742. This study identified an association of a class II HLA allele with allergic reactions to asparaginase, one of the most frequent toxicities associated with this drug.

  53. French D, Hamilton LH, Mattano LA Jr, Sather HN, Devidas M, Nachman JB, et al. A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2008;111(9):4496–9. doi:10.1182/blood-2007-11-123885.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Wang X, Liu W, Sun CL, Armenian SH, Hakonarson H, Hageman L, et al. Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the children’s oncology group. J Clin Oncol. 2014;32(7):647–53. doi:10.1200/JCO.2013.50.3557.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Schmiegelow K, Forestier E, Kristinsson J, Soderhall S, Vettenranta K, Weinshilboum R, et al. Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Leukemia. 2009;23(3):557–64. doi:10.1038/leu.2008.316.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Stanulla M, Schaeffeler E, Flohr T, Cario G, Schrauder A, Zimmermann M, et al. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA. 2005;293(12):1485–9. doi:10.1001/jama.293.12.1485.

    Article  CAS  PubMed  Google Scholar 

  57. Relling MV, Hancock ML, Boyett JM, Pui CH, Evans WE. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood. 1999;93(9):2817–23.

    CAS  PubMed  Google Scholar 

  58. Relling MV, Dervieux T. Pharmacogenetics and cancer therapy. Nat Rev Cancer. 2001;1(2):99–108. doi:10.1038/35101056.

    Article  CAS  PubMed  Google Scholar 

  59. Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, Clavell LA, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood. 2001;97(5):1211–8.

    Article  CAS  PubMed  Google Scholar 

  60. Mattano LA Jr, Devidas M, Nachman JB, Sather HN, Hunger SP, Steinherz PG, et al. Effect of alternate-week versus continuous dexamethasone scheduling on the risk of osteonecrosis in paediatric patients with acute lymphoblastic leukaemia: results from the CCG-1961 randomised cohort trial. Lancet Oncol. 2012;13(9):906–15. doi:10.1016/S1470-2045(12)70274-7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Mattano LA Jr, Sather HN, Trigg ME, Nachman JB. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children’s Cancer Group. J Clin Oncol. 2000;18(18):3262–72.

    PubMed  Google Scholar 

  62. Chang T, Yang W, Van Driest L, Kaste S, Bowten E, Basford M et al. Glutamate Receptor Polymorphisms Contribute to Glucocorticoid-Associated Osteonecrosis Blood; ASH abstracts. Blood 2014;2014:124–367.

  63. •• Yang JJ, Cheng C, Devidas M, Cao X, Campana D, Yang W et al. Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood. 2012;120(20):4197–204. doi:10.1182/blood-2012-07-440107. This genome wide association study in over 2000 pediatric ALL patients identified SNPs associated with relapse, some of which were related to drug disposition.

Download references

Disclosure

Jennifer L. McNeer and Elizabeth A. Raetz declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Raetz.

Additional information

This article is part of the Topical collection on Hematology/Oncology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNeer, J.L., Raetz, E.A. Childhood Acute Lymphoblastic Leukemia: Toward Personalized Medicine. Curr Pediatr Rep 3, 111–118 (2015). https://doi.org/10.1007/s40124-015-0078-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40124-015-0078-8

Keywords

Navigation