Moore AT. Cone and cone-rod dystrophies. J Med Genet. 1992;29(5):289–90.
CAS
PubMed
PubMed Central
Article
Google Scholar
Michaelides M, Hardcastle AJ, Hunt DM, et al. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51(3):232–58.
PubMed
Article
Google Scholar
Rahman N, Georgiou M, Khan KN, et al. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options. Br J Ophthalmol. 2019. https://doi.org/10.1136/bjophthalmol-2019-315086.
Article
PubMed
PubMed Central
Google Scholar
Delori FC, Dorey CK, Staurenghi G, et al. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Investig Ophthalmol Vis Sci. 1995;36(3):718–29.
CAS
Google Scholar
Freund KB, Mrejen S, Jung J, et al. Increased fundus autofluorescence related to outer retinal disruption. JAMA Ophthalmol. 2013;131(12):1645–9.
PubMed
Article
Google Scholar
Parodi MB, Iacono P, Campa C, et al. Fundus autofluorescence patterns in Best vitelliform macular dystrophy. Am J Ophthalmol. 2014;158(5):1086–92.
PubMed
Article
Google Scholar
Parodi MB, Iacono P, Del Turco C, et al. Functional assessment of the fundus autofluorescence pattern in Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol. 2016;254(7):1297–302.
CAS
PubMed
Article
Google Scholar
Parodi MB, Iacono P, Triolo G, et al. Morpho-functional correlation of fundus autofluorescence in Stargardt disease. Br J Ophthalmol. 2015;99(10):1354–9.
PubMed
Article
Google Scholar
Theelen T, Berendschot TT, Boon CJ, et al. Analysis of visual pigment by fundus autofluorescence. Exp Eye Res. 2008;86(2):296–304.
CAS
PubMed
Article
Google Scholar
Borrelli E, Costanzo E, Parravano M, et al. Impact of bleaching on photoreceptors in different intermediate AMD phenotypes. Transl Vis Sci Technol. 2019;8(6):5.
PubMed
PubMed Central
Article
Google Scholar
Bosch-Presegue L, Ramon E, Toledo D, et al. Alterations in the photoactivation pathway of rhodopsin mutants associated with retinitis pigmentosa. FEBS J. 2011;278(9):1493–505.
CAS
PubMed
Article
Google Scholar
Giani A, Pellegrini M, Carini E, et al. The dark atrophy with indocyanine green angiography in Stargardt disease. Investig Ophthalmol Vis Sci. 2012;53(7):3999–4004.
Article
Google Scholar
Stanga PE, Downes SM, Ahuja RM, et al. Comparison of optical coherence tomography and fluorescein angiography in assessing macular edema in retinal dystrophies: preliminary results. Int Ophthalmol. 2001;23(4–6):321–5.
CAS
PubMed
Article
Google Scholar
Battaglia Parodi M, Iacono P, Romano F, et al. Spectral domain optical coherence tomography features in different stages of Best vitelliform macular dystrophy. Retina. 2018;38(5):1041–6.
PubMed
Article
Google Scholar
Parodi MB, Cicinelli MV, Iacono P, et al. Multimodal imaging of foveal cavitation in retinal dystrophies. Graefes Arch Clin Exp Ophthalmol. 2017;255(2):271–9.
PubMed
Article
Google Scholar
Battaglia Parodi M, Cicinelli MV, Rabiolo A, et al. Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography. Br J Ophthalmol. 2017;101(6):780–5.
PubMed
Article
Google Scholar
Battaglia Parodi M, Cicinelli MV, Rabiolo A, et al. Vessel density analysis in patients with retinitis pigmentosa by means of optical coherence tomography angiography. Br J Ophthalmol. 2017;101(4):428–32.
PubMed
Article
Google Scholar
Parodi MB, Romano F, Cicinelli MV, et al. Retinal vascular impairment in Best vitelliform macular dystrophy assessed by means of optical coherence tomography angiography. Am J Ophthalmol. 2018;187:61–70.
Article
Google Scholar
Eastline M, Munk MR, Wolf S, et al. Repeatability of wide-field optical coherence tomography angiography in normal retina. Transl Vis Sci Technol. 2019;8(3):6.
PubMed
PubMed Central
Article
Google Scholar
Pellegrini M, Cozzi M, Staurenghi G, et al. Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders. PLoS One. 2019;14(4):e0214892.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mastropasqua R, D’Aloisio R, De Nicola C, et al. Widefield swept source OCTA in retinitis pigmentosa. Diagnostics (Basel). 2020;10(1):E50.
Article
Google Scholar
Hirano T, Imai A, Kasamatsu H, et al. Assessment of diabetic retinopathy using two ultra-wide-field fundus imaging systems, the Clarus(R) and Optos systems. BMC Ophthalmol. 2018;18(1):332.
PubMed
PubMed Central
Article
Google Scholar
Sarao V, Veritti D, Borrelli E, et al. A comparison between a white LED confocal imaging system and a conventional flash fundus camera using chromaticity analysis. BMC Ophthalmol. 2019;19(1):231.
PubMed
PubMed Central
Article
Google Scholar
Trichonas G, Traboulsi EI, Ehlers JP. Ultra-widefield fundus autofluorescence patterns in retinitis pigmentosa and other retinal dystrophies. Ophthalmic Genet. 2017;38(1):98–100.
PubMed
Article
Google Scholar
Hariri AH, Gui W, Datoo O’Keefe GA, et al. Ultra-widefield fundus autofluorescence imaging of patients with retinitis pigmentosa: a standardized grading system in different genotypes. Ophthalmol Retina. 2018;2(7):735–45.
PubMed
Article
Google Scholar
Khurram Butt D, Gurbaxani A, Kozak I. Ultra-wide-field fundus autofluorescence for the detection of inherited retinal disease in difficult-to-examine children. J Pediatr Ophthalmol Strabismus. 2019;56(6):383–7.
PubMed
Article
Google Scholar
Kothari N, Pineles S, Sarraf D, et al. Clinic-based ultra-wide field retinal imaging in a pediatric population. Int J Retina Vitreous. 2019;5(Suppl 1):21.
PubMed
PubMed Central
Article
Google Scholar
Manivannan A, Plskova J, Farrow A, et al. Ultra-wide-field fluorescein angiography of the ocular fundus. Am J Ophthalmol. 2005;140(3):525–7.
PubMed
Article
Google Scholar
Pfau M, Goerdt L, Schmitz-Valckenberg S, et al. Green-light autofluorescence versus combined blue-light autofluorescence and near-infrared reflectance imaging in geographic atrophy secondary to age-related macular degeneration. Investig Ophthalmol Vis Sci. 2017;58(6):BIO121–30.
Article
Google Scholar
Borrelli E, Nittala MG, Abdelfattah NS, et al. Comparison of short-wavelength blue-light autofluorescence and conventional blue-light autofluorescence in geographic atrophy. Br J Ophthalmol. 2018. https://doi.org/10.1136/bjophthalmol-2018-311849.
Article
PubMed
PubMed Central
Google Scholar
Borrelli E, Lei J, Balasubramanian S, et al. Green emission fluorophores in eyes with atrophic age-related macular degeneration: a colour fundus autofluorescence pilot study. Br J Ophthalmol. 2018;102(6):827–32.
PubMed
Article
Google Scholar
Dysli C, Muller PL, Birtel J, et al. Spectrally resolved fundus autofluorescence in ABCA4-related retinopathy. Investig Ophthalmol Vis Sci. 2019;60(1):274–81.
CAS
Article
Google Scholar
Yi J, Li S, Jia X, et al. Evaluation of the ELOVL4, PRPH2 and ABCA4 genes in patients with Stargardt macular degeneration. Mol Med Rep. 2012;6(5):1045–9.
CAS
PubMed
Article
Google Scholar
Palejwala NV, Gale MJ, Clark RF, et al. Insights into autosomal dominant Stargardt-like macular dystrophy through multimodality diagnostic imaging. Retina. 2016;36(1):119–30.
PubMed
Article
Google Scholar
Cukras CA, Wong WT, Caruso R, et al. Centrifugal expansion of fundus autofluorescence patterns in Stargardt disease over time. Arch Ophthalmol. 2012;130(2):171–9.
PubMed
Article
Google Scholar
Cicinelli MV, Battista M, Starace V, et al. Monitoring and management of the patient with Stargardt disease. Clin Optom (Auckl). 2019;11:151–65.
Article
Google Scholar
Strauss RW, Ho A, Munoz B, et al. The natural history of the progression of atrophy secondary to Stargardt disease (ProgStar) studies: design and baseline characteristics: ProgStar Report No. 1. Ophthalmology. 2016;123(4):817–28.
PubMed
Article
Google Scholar
Burke TR, Rhee DW, Smith RT, et al. Quantification of peripapillary sparing and macular involvement in Stargardt disease (STGD1). Investig Ophthalmol Vis Sci. 2011;52(11):8006–15.
Article
Google Scholar
Kumar V. Insights into autofluorescence patterns in Stargardt macular dystrophy using ultra-wide-field imaging. Graefes Arch Clin Exp Ophthalmol. 2017;255(10):1917–22.
PubMed
Article
Google Scholar
Klufas MA, Tsui I, Sadda SR, et al. Ultrawidefield autofluoresence in Abca4 Stargardt disease. Retina. 2018;38(2):403–15.
PubMed
Article
Google Scholar
Arrigo A, Grazioli A, Romano F, et al. Multimodal evaluation of central and peripheral alterations in Stargardt disease: a pilot study. Br J Ophthalmol. 2019. https://doi.org/10.1136/bjophthalmol-2019-315148.
Article
PubMed
Google Scholar
Abalem MF, Otte B, Andrews C, et al. Peripheral visual fields in ABCA4 Stargardt disease and correlation with disease extent on ultra-widefield fundus autofluorescence. Am J Ophthalmol. 2017;184:181–8.
PubMed
PubMed Central
Article
Google Scholar
Chen L, Lee W, de Carvalho JRL Jr, et al. Multi-platform imaging in ABCA4-associated disease. Sci Rep. 2019;9(1):6436.
PubMed
PubMed Central
Article
CAS
Google Scholar
Zhao PY, Abalem MF, Nadelman D, et al. Peripheral pigmented retinal lesions in Stargardt disease. Am J Ophthalmol. 2018;188:104–10.
PubMed
Article
Google Scholar
Abalem MF, Omari AA, Schlegel D, et al. Macular hyperpigmentary changes in ABCA4-Stargardt disease. Int J Retina Vitreous. 2019;5:9.
PubMed
PubMed Central
Article
Google Scholar
Kaplan J, Bonneau D, Frezal J, et al. Clinical and genetic heterogeneity in retinitis pigmentosa. Hum Genet. 1990;85(6):635–42.
CAS
PubMed
Article
Google Scholar
Wakabayashi T, Sawa M, Gomi F, et al. Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa. Acta Ophthalmol. 2010;88(5):e177–83.
PubMed
Article
Google Scholar
Lenassi E, Troeger E, Wilke R, et al. Correlation between macular morphology and sensitivity in patients with retinitis pigmentosa and hyperautofluorescent ring. Investig Ophthalmol Vis Sci. 2012;53(1):47–52.
Article
Google Scholar
Robson AG, El-Amir A, Bailey C, et al. Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Investig Ophthalmol Vis Sci. 2003;44(8):3544–50.
Article
Google Scholar
Oishi A, Oishi M, Ogino K, et al. Wide-field fundus autofluorescence for retinitis pigmentosa and cone/cone-rod dystrophy. Adv Exp Med Biol. 2016;854:307–13.
CAS
PubMed
Article
Google Scholar
Oishi A, Ogino K, Makiyama Y, et al. Wide-field fundus autofluorescence imaging of retinitis pigmentosa. Ophthalmology. 2013;120(9):1827–34.
PubMed
Article
Google Scholar
Lee J, Asano S, Inoue T, et al. Investigating the usefulness of fundus autofluorescence in retinitis pigmentosa. Ophthalmol Retina. 2018;2(10):1062–70.
PubMed
Article
Google Scholar
Ogura S, Yasukawa T, Kato A, et al. Wide-field fundus autofluorescence imaging to evaluate retinal function in patients with retinitis pigmentosa. Am J Ophthalmol. 2014;158(5):1093–8.
PubMed
Article
Google Scholar
Trichonas G, Traboulsi EI, Ehlers JP. Correlation of ultra-widefield fundus autofluorescence patterns with the underlying genotype in retinal dystrophies and retinitis pigmentosa. Ophthalmic Genet. 2017;38(4):320–4.
PubMed
Article
Google Scholar
Wegscheider E, Preising MN, Lorenz B. Fundus autofluorescence in carriers of X-linked recessive retinitis pigmentosa associated with mutations in RPGR, and correlation with electrophysiological and psychophysical data. Graefes Arch Clin Exp Ophthalmol. 2004;242(6):501–11.
CAS
PubMed
Article
Google Scholar
Ogino K, Oishi M, Oishi A, et al. Radial fundus autofluorescence in the periphery in patients with X-linked retinitis pigmentosa. Clin Ophthalmol. 2015;9:1467–74.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ratra D, Chandrasekharan DP, Aruldas P, et al. Concurrent retinitis pigmentosa and pigmented paravenous retinochoroidal atrophy phenotypes in the same patient. Indian J Ophthalmol. 2016;64(10):775–7.
PubMed
PubMed Central
Article
Google Scholar
McKay GJ, Clarke S, Davis JA, et al. Pigmented paravenous chorioretinal atrophy is associated with a mutation within the crumbs homolog 1 (CRB1) gene. Investig Ophthalmol Vis Sci. 2005;46(1):322–8.
Article
Google Scholar
Takagi S, Hirami Y, Takahashi M, et al. Use of wide-field fundus camera, fundus autofluorescence, and OCT in cases of pigmented paravenous retinochoroidal atrophy. Ophthalmol Retina. 2018;2(1):79–81.
PubMed
Article
Google Scholar
Kumar V, Kumawat D, Tewari R, et al. Ultra-wide field imaging of pigmented para-venous retino-choroidal atrophy. Eur J Ophthalmol. 2019;29(4):444–52.
PubMed
Article
Google Scholar
Cicinelli MV, Giuffre C, Rabiolo A, et al. Optical coherence tomography angiography of pigmented paravenous retinochoroidal atrophy. Ophthalmic Surg Lasers Imaging Retina. 2018;49(5):381–3.
PubMed
Article
Google Scholar
Tsang SH, Sharma T. Progressive cone dystrophy and cone-rod dystrophy (XL, AD, and AR). Adv Exp Med Biol. 2018;1085:53–60.
PubMed
Article
Google Scholar
Miyake Y, Horiguchi M, Tomita N, et al. Occult macular dystrophy. Am J Ophthalmol. 1996;122(5):644–53.
CAS
PubMed
Article
Google Scholar
Kondo M, Miyake Y, Kondo N, et al. Peripheral cone dystrophy: a variant of cone dystrophy with predominant dysfunction in the peripheral cone system. Ophthalmology. 2004;111(4):732–9.
PubMed
Article
Google Scholar
Thiadens AA, Phan TM, Zekveld-Vroon RC, et al. Clinical course, genetic etiology, and visual outcome in cone and cone-rod dystrophy. Ophthalmology. 2012;119(4):819–26.
PubMed
Article
Google Scholar
D’Esposito F, Cennamo G, de Crecchio G, et al. Multimodal imaging in autosomal dominant cone-rod dystrophy caused by novel CRX variant. Ophthalmic Res. 2018;60(3):169–75.
PubMed
Article
CAS
Google Scholar
Zahlava J, Lestak J, Karel I. Optical coherence tomography in progressive cone dystrophy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(4):628–34.
PubMed
Article
Google Scholar
Park SJ, Woo SJ, Park KH, et al. Morphologic photoreceptor abnormality in occult macular dystrophy on spectral-domain optical coherence tomography. Investig Ophthalmol Vis Sci. 2010;51(7):3673–9.
Article
Google Scholar
Fujinami K, Tsunoda K, Hanazono G, et al. Fundus autofluorescence in autosomal dominant occult macular dystrophy. Arch Ophthalmol. 2011;129(5):597–602.
PubMed
Article
Google Scholar
Oishi M, Oishi A, Ogino K, et al. Wide-field fundus autofluorescence abnormalities and visual function in patients with cone and cone-rod dystrophies. Investig Ophthalmol Vis Sci. 2014;55(6):3572–7.
Article
Google Scholar
Furutani Y, Ogino K, Oishi A, et al. Intra-familial similarity of wide-field fundus autofluorescence in inherited retinal dystrophy. Adv Exp Med Biol. 2016;854:299–305.
CAS
PubMed
Article
Google Scholar
Sisk RA, Hufnagel RB, Laham A, et al. Peripheral cone dystrophy: expanded clinical spectrum, multimodal and ultrawide-field imaging, and genomic analysis. J Ophthalmol. 2018;2018:2984934.
PubMed
PubMed Central
Article
CAS
Google Scholar
Vaphiades MS, Doyle JI. Peripheral cone dystrophy: a diagnostic improbability? J Neuroophthalmol. 2014;34(4):366–8.
PubMed
Article
Google Scholar
Boon CJ, Klevering BJ, Leroy BP, et al. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res. 2009;28(3):187–205.
CAS
PubMed
Article
Google Scholar
Laloum JE, Deutman AF. Peripheral vitelliform lesions in vitelliform macular dystrophy. J Fr Ophtalmol. 1991;14(2):74–8.
CAS
PubMed
Google Scholar
Shah D, Saurabh K, Roy R. Multimodal imaging in multifocal Best disease. Indian J Ophthalmol. 2018;66(9):1313–5.
PubMed
PubMed Central
Article
Google Scholar
Querques G, Regenbogen M, Soubrane G, et al. High-resolution spectral domain optical coherence tomography findings in multifocal vitelliform macular dystrophy. Surv Ophthalmol. 2009;54(2):311–6.
PubMed
Article
Google Scholar