An Evaluation of Staphylococci from Ocular Surface Infections Treated Empirically with Topical Besifloxacin: Antibiotic Resistance, Molecular Characteristics, and Clinical Outcomes



Understanding antibiotic resistance and toxin profiles among staphylococcal isolates in ocular infections can aid in therapeutic management and infection prevention strategies. We evaluated in vitro antibiotic resistance patterns and molecular traits of staphylococci isolated from patients with ocular surface infections. We also report on clinical outcomes for these patients following empirical treatment with topical besifloxacin ophthalmic suspension 0.6%.


This was a small observational study. Participating investigators from three clinical sites collected an initial ocular culture from the affected eye of patients presenting with ocular surface infections with presumed staphylococcal etiology. Clinical outcome data for patients with confirmed staphylococcal infections were collated later through retrospective review of patient medical records. Staphylococcal species identification in ocular cultures, in vitro antibiotic susceptibility testing, and PCR-based determination of methicillin resistance cassettes and toxin genotypes were conducted at a central laboratory. Isolates were categorized as susceptible or resistant based on systemic breakpoints, where available.


Cultures were collected from 43 patients, and staphylococcal infections were confirmed in 25 patients. Two isolates of Staphylococcus aureus and 27 isolates of Staphylococcus epidermidis were identified. Both S. aureus isolates were methicillin-susceptible, lacked the gene encoding Panton-Valentine leukocidin, and carried few enterotoxin genes. Eight (30%) S. epidermidis were methicillin-resistant (MRSE), and 10 (37%) were ciprofloxacin-resistant. All but two MRSE isolates demonstrated multidrug resistance (MDR), and the staphylococcal cassette chromosome mec (SCCmec) type IVa was detected in five of the eight MRSE isolates. Clinical resolution of the ocular surface infection was reported in all 25 patients following treatment with besifloxacin.


In this study, S. aureus contained few toxins, while SCCmec IVa and MDR was predominant among MRSE from ocular surface infections. Despite significant in vitro fluoroquinolone resistance, there were no cases of treatment failure with topical besifloxacin ophthalmic suspension 0.6%.


Bausch Health US, LLC.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    O’Callaghan RJ. The pathogenesis of Staphylococcus aureus eye Infections. Pathogens. 2018;7(1):E9.

    PubMed  Google Scholar 

  2. 2.

    Jevons MP. “Celbenin”-resistant Staphylococci. Br Med J. 1961;1(5219):124–5.

    PubMed Central  Google Scholar 

  3. 3.

    Chambers HF. The changing epidemiology of staphylococcus aureus? Emerg Infect Dis. 2001;7(2):178–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Harada D, Nakaminami H, Miyajima E, et al. Change in genotype of methicillin-resistant Staphylococcus aureus (MRSA) affects the antibiogram of hospital-acquired MRSA. J Infect Chemother. 2018;24(7):563–9.

    PubMed  Google Scholar 

  5. 5.

    Chen SY, Liao CH, Wang JL, et al. Methicillin-resistant Staphylococcus aureus (MRSA) staphylococcal cassette chromosome mec genotype effects outcomes of patients with healthcare-associated MRSA bacteremia independently of vancomycin minimum inhibitory concentration. Clin Infect Dis. 2012;55(10):1329–37.

    CAS  PubMed  Google Scholar 

  6. 6.

    Kempker RR, Farley MM, Ladson JL, Satola S, Ray SM. Association of methicillin-resistant Staphylococcus aureus (MRSA) USA300 genotype with mortality in MRSA bacteremia. J Infect. 2010;61(5):372–81.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Goudarzi M, Seyedjavadi SS, Nasiri MJ, et al. Molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients with bacteremia based on MLST, SCCmec, spa, and agr locus types analysis. Microb Pathog. 2017;104:328–35.

    CAS  PubMed  Google Scholar 

  8. 8.

    Hesari MR, Salehzadeh A, Darsanaki RK. Prevalence and molecular typing of methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin gene. Acta Microbiol Immunol Hung. 2018;65(1):93–106.

    CAS  PubMed  Google Scholar 

  9. 9.

    Petinaki E, Arvaniti A, Dimitracopoulos G, Spiliopoulou I. Detection of mecA, mecR1 and mecI genes among clinical isolates of methicillin-resistant staphylococci by combined polymerase chain reactions. J Antimicrob Chemother. 2001;47(3):297–304.

    CAS  PubMed  Google Scholar 

  10. 10.

    Wielders CL, Fluit AC, Brisse S, Verhoef J, Schmitz FJ. mecA gene is widely disseminated in Staphylococcus aureus population. J Clin Microbiol. 2002;40(11):3970–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hanssen AM, Kjeldsen G, Sollid JU. Local variants of Staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococci: evidence of horizontal gene transfer? Antimicrob Agents Chemother. 2004;48(1):285–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Naimi TS, LeDell KH, Como-Sabetti K, et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA. 2003;290(22):2976–84.

    CAS  PubMed  Google Scholar 

  13. 13.

    Deurenberg RH, Stobberingh EE. The molecular evolution of hospital- and community-associated methicillin-resistant Staphylococcus aureus. Curr Mol Med. 2009;9(2):100–15.

    CAS  PubMed  Google Scholar 

  14. 14.

    Tsuji BT, Rybak MJ, Cheung CM, Amjad M, Kaatz GW. Community- and health care-associated methicillin-resistant Staphylococcus aureus: a comparison of molecular epidemiology and antimicrobial activities of various agents. Diagn Microbiol Infect Dis. 2007;58(1):41–7.

    CAS  PubMed  Google Scholar 

  15. 15.

    Vandenesch F, Naimi T, Enright MC, et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis. 2003;9(8):978–84.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hesje CK, Sanfilippo CM, Haas W, Morris TW. Molecular epidemiology of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolated from the eye. Curr Eye Res. 2011;36(2):94–102.

    CAS  PubMed  Google Scholar 

  17. 17.

    Lo WT, Wang CC. Panton-Valentine leukocidin in the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Pediatr Neonatol. 2011;52(2):59–65.

    PubMed  Google Scholar 

  18. 18.

    Kilic A, Li H, Stratton CW, Tang YW. Antimicrobial susceptibility patterns and staphylococcal cassette chromosome mec types of, as well as Panton-Valentine leukocidin occurrence among, methicillin-resistant Staphylococcus aureus isolates from children and adults in middle Tennessee. J Clin Microbiol. 2006;44(12):4436–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bispo PJ, Hofling-Lima AL, Pignatari AC. Characterization of ocular methicillin-resistant Staphylococcus epidermidis isolates belonging predominantly to clonal complex 2 subcluster II. J Clin Microbiol. 2014;52(5):1412–7.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Jena S, Panda S, Nayak KC, Singh DV. Identification of major sequence types among multidrug-resistant Staphylococcus epidermidis strains isolated from infected eyes and healthy conjunctiva. Front Microbiol. 2017;8:1430.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Garcia LS. Clinical microbiology procedures handbook. 3rd ed. Washington, DC: ASM Press; American Society for Microbiology; 2014.

    Google Scholar 

  22. 22.

    CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. 10th ed. CLSI document M7-A10. Wayne: Clinical and Laboratory Standards Institute; 2015.

  23. 23.

    CLSI. Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Wayne: Clinical and Laboratory Standards Institute; 2017.

  24. 24.

    Zhang K, McClure JA, Conly JM. Enhanced multiplex PCR assay for typing of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. Mol Cell Probes. 2012;26(5):218–21.

    PubMed  Google Scholar 

  25. 25.

    Lina G, Piémont Y, Godail-Gamot F, et al. Involvement of panton-valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis. 1999;29(5):1128–32.

    CAS  PubMed  Google Scholar 

  26. 26.

    Salgado-Pabón W, Case-Cook LC, Schlievert PM. Molecular analysis of staphylococcal superantigens. In: Ji Y, editor. Methicillin-resistant Staphylococcus aureus (MRSA) protocols. Methods in molecular biology (methods and protocols), vol. 1085. Totowa: Humana Press; 2014.

    Google Scholar 

  27. 27.

    Sueke H, Shankar J, Neal T, et al. lukSF-PV in Staphylococcus aureus keratitis isolates and association with clinical outcome. Invest Ophthalmol Vis Sci. 2013;54(5):3410–6.

    PubMed  Google Scholar 

  28. 28.

    Kang YC, Hsiao CH, Yeh LK, et al. Methicillin-resistant staphylococcus aureus ocular infection in Taiwan: clinical features, genotying, and antibiotic susceptibility. Medicine (Baltimore). 2015;94(42):e1620.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Hsiao CH, Ong SJ, Chuang CC, Ma DH, Huang YC. A comparison of clinical features between community-associated and healthcare-associated methicillin-resistant Staphylococcus aureus keratitis. J Ophthalmol. 2015;2015:923941.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Thomas RK, Melton R, Asbell PA. Antibiotic resistance among ocular pathogens: current trends from the ARMOR surveillance study (2009–2016). Clin Optom (Auckl). 2019;11:12–26.

    Google Scholar 

  31. 31.

    Asbell PA, DeCory HH. Antibiotic resistance among bacterial conjunctival pathogens collected in the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) surveillance study. PLoS One. 2018;13(10):e0205814.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Cambau E, Matrat S, Pan XS, et al. Target specificity of the new fluoroquinolone besifloxacin in Streptococcus pneumoniae, Staphylococcus aureus and Escherichia coli. J Antimicrob Chemother. 2009;63(3):443–50.

    CAS  PubMed  Google Scholar 

  33. 33.

    Haas W, Pillar CM, Zurenko GE, et al. Besifloxacin, a novel fluoroquinolone, has broad-spectrum in vitro activity against aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 2009;53(8):3552–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Haas W, Pillar CM, Hesje CK, Sanfilippo CM, Morris TW. Bactericidal activity of besifloxacin against staphylococci, Streptococcus pneumoniae and Haemophilus influenzae. J Antimicrob Chemother. 2010;65(7):1441–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Haas W, Gearinger LS, Usner DW, Decory HH, Morris TW. Integrated analysis of three bacterial conjunctivitis trials of besifloxacin ophthalmic suspension, 0.6%: etiology of bacterial conjunctivitis and antibacterial susceptibility profile. Clin Ophthalmol. 2011;5:1369–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Miller D, Chang JS, Flynn HW, Alfonso EC. Comparative in vitro susceptibility of besifloxacin and seven comparators against ciprofloxacin- and methicillin-susceptible/nonsusceptible staphylococci. J Ocul Pharmacol Ther. 2013;29(3):339–44.

    CAS  PubMed  Google Scholar 

  37. 37.

    Karpecki P, Depaolis M, Hunter JA, et al. Besifloxacin ophthalmic suspension 0.6% in patients with bacterial conjunctivitis: a multicenter, prospective, randomized, double-masked, vehicle-controlled, 5-day efficacy and safety study. Clin Ther. 2009;31(3):514–26.

    CAS  PubMed  Google Scholar 

  38. 38.

    Tepedino ME, Heller WH, Usner DW, et al. Phase III efficacy and safety study of besifloxacin ophthalmic suspension 0.6% in the treatment of bacterial conjunctivitis. Curr Med Res Opin. 2009;25(5):1159–69.

    CAS  PubMed  Google Scholar 

  39. 39.

    McDonald MB, Protzko EE, Brunner LS, et al. Efficacy and safety of besifloxacin ophthalmic suspension 0.6% compared with moxifloxacin ophthalmic solution 0.5% for treating bacterial conjunctivitis. Ophthalmology. 2009;116(9):1615–23.

    PubMed  Google Scholar 

  40. 40.

    Xu Z, Shah HN, Misra R, et al. The prevalence, antibiotic resistance and mecA characterization of coagulase negative staphylococci recovered from non-healthcare settings in London, UK. Antimicrob Resist Infect Control. 2018;7:73.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Wurster JI, Bispo PJM, Van Tyne D, et al. Staphylococcus aureus from ocular and otolaryngology infections are frequently resistant to clinically important antibiotics and are associated with lineages of community and hospital origins. PLoS One. 2018;13(12):e0208518.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Saber H, Jasni AS, Jamaluddin TZMT, Ibrahim R. A review of staphylococcal cassette chromosome mec (SCCmec) types in coagulase-negative Staphylococci (CoNS) species. Malays J Med Sci. 2017;24(5):7–18.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Barbier F, Ruppé E, Hernandez D, et al. Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. J Infect Dis. 2010;202(2):270–81.

    CAS  PubMed  Google Scholar 

  44. 44.

    Hanssen AM, Ericson Sollid JU. SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol. 2006;46(1):8–20.

    CAS  PubMed  Google Scholar 

  45. 45.

    Wielders CLC, Vriens MR, Brisse S, et al. In-vivo transfer of mecA DNA to Staphylococcus aureus [corrected]. Lancet. 2001;357(9269):1674–5.

    CAS  PubMed  Google Scholar 

  46. 46.

    Blondeau JM, Sanfilippo CM, DeCory HH. Incidence of polybacterial infections in three bacterial conjunctivitis studies and outcomes with besifloxacin ophthalmic suspension 0.6%. In: Presented at the annual meeting of the Association for Research in Vision and Ophthalmology. Vancouver, Canada, April 28–May 3, 2019.

  47. 47.

    Willcox MD. Characterization of the normal microbiota of the ocular surface. Exp Eye Res. 2013;117:99–105.

    CAS  PubMed  Google Scholar 

  48. 48.

    Iwalokun BA, Oluwadun A, Akinsinde KA, Niemogha MT, Nwaokorie FO. Bacteriologic and plasmid analysis of etiologic agents of conjunctivitis in Lagos, Nigeria. J Ophthalmic Inflamm Infect. 2011;1(3):95–103.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank the study participant(s) for their involvement in the study.


This study and the journal’s Rapid Services and Fees was funded by Bausch Health US, LLC.

Medical Editing/Writing Assistance

The authors acknowledge the writing assistance of Sandra Westra, PharmD, of Churchill Communications (Maplewood, NJ), funded by Bausch Health US, LLC.


All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.


All investigators (Barry Schechter, John D. Sheppard, and Penny A. Asbell) received honoraria (funded by Bausch Health US, LLC) for participation in the current study. Barry Schechter has received speaker fees from Bausch Health US, LLC. John D. Sheppard has received grants and advisory board/consultancy fees from Bausch Health US, LLC. Penny A. Asbell has received grants and advisory board/consultancy fees from Bausch Health US, LLC. Heleen H. DeCory is an employee of Bausch Health US, LLC. Christine M. Sanfilippo is an employee of Bausch Health US, LLC. The authors report no other conflicts of interest in this work.

Compliance with Ethics Guidelines

The protocol was approved by an institutional review board (Biomedical Research Alliance of New York [BRANY IRB], Lake Success, NY), and the study was conducted in compliance with the Declaration of Helsinki and all of its amendments. All patients provided written informed consent.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information



Corresponding author

Correspondence to Christine M. Sanfilippo.

Additional information

Enhanced Digital Features

To view enhanced digital features for this article go to

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schechter, B.A., Sheppard, J.D., Sanfilippo, C.M. et al. An Evaluation of Staphylococci from Ocular Surface Infections Treated Empirically with Topical Besifloxacin: Antibiotic Resistance, Molecular Characteristics, and Clinical Outcomes. Ophthalmol Ther 9, 159–173 (2020).

Download citation


  • Antibiotic resistance
  • Besifloxacin
  • Molecular characteristics
  • Ocular surface infections
  • Staphylococci