Tailor-made Fuels for Highly Boosted Gasoline Engines

This is a preview of subscription content, access via your institution.

TABLE 1
FIGURE 1
FIGURE 2
FIGURE 3

References

  1. [1]

    Geilen, F.; vom Stein, T.; Engendahl, B.; Winterle, S.; Liauw, M.; Klankermayer, J.; Leitner, W.: Highly selective decarbonylation of 5-(hydroxymethyl)furfural in the presence of compressed carbon dioxide. In: Angewandte Chemie International, Ausgabe 50 (2011), no. 30, pp. 6831–6834

    Google Scholar 

  2. [2]

    Klankermayer, J.; Thewes, M.; Müther, M.: From production to combustion — an example for the fuel design process. In: Proceedings of the 4th TMFB International Workshop of the Cluster of Excellence Tailor Made Fuels from Biomass, Aachen, 2011

    Google Scholar 

  3. [3]

    Gong, Y.; Lin, L.; Shi, J.; Liu, S.: Oxidative decarboxylation of levulinic acid by cupric oxides. In: Molecules 15 (2010), no. 11, pp. 7946–7960

    Article  Google Scholar 

  4. [4]

    Gong, Y.; Lin, L.: Oxidative decarboxylation of levulinic acid by silver(i)/persulfate. In: Molecules 16 (2011), no. 3, pp. 2714–2725

    Article  Google Scholar 

  5. [5]

    Yoneda, H.; Tantillo, D. J.; Atsumi, S.: Biological production of 2-butanone in escherichia coli. In: ChemSusChem 7 (2014), no. 1, pp. 92–95

    Article  Google Scholar 

  6. [6]

    Thewes, M.: Potenziale aktueller und zukünftiger Biokraftstoffe für ottomotorische Brennverfahren. Aachen, Lehrstuhl für Verbrennungskraftmaschinen, RWTH Aachen University, Dissertation, 2014

    Google Scholar 

  7. [7]

    Thewes, M.; Müther, M.; Pischinger, S.; Budde, M.; Brunn, A.; Sehr, A.; Adomeit, P.; Klankermayer, J.: Analysis of the impact of 2-Methylfuran on mixture formation and combustion in a direct-injection spark-ignition engine. In: Energy Fuel 25 (2011), no. 12, pp. 5549–5561

    Article  Google Scholar 

  8. [8]

    Thewes, M.; Müther, M.; Brassat, A.; Pischinger, S.; Sehr, A.: Analysis of the effect of bio-fuels on the combustion in a downsized DI SI engine. In: SAE International Journal of Fuels and Lubricants 5 (2012), no. 1, pp. 274–288

    Article  Google Scholar 

  9. [9]

    Brassat, A.; Thewes, M.; Müther, M.; Pischinger, S.: Tailor-made fuels from biomass for gasoline combustion systems. In: MTZ Worldwide 72 (2011), no. 12, pp. 56–63

    Article  Google Scholar 

  10. [10]

    Yaws, C. L.: Thermophysical properties of chemicals and hydrocarbons. Norwich, NY, USA, William Andrew Inc., 2008

    Google Scholar 

  11. [11]

    Yaws, C. L.: Transport properties of chemicals and hydrocarbons. Norwich, NY, USA: William Andrew Inc., 2009

    Google Scholar 

  12. [12]

    Daubert, T. E.; Danner, R. P.: Physical and thermodynamic properties of pure chemicals. {p;New York, USA, Hemisphere Publishing Corporation}, 1994

    Google Scholar 

  13. [13]

    Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA), Gestis-Stoffdatenbank: http://gestis.itrust.de/nxt/gateway.dll/gestis_de/000000.xml?f=templates$fn=default.htm$vid=gestisdeu:sdbdeu$3.0 (acess 29. april 2015)

  14. [14]

    Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA), Gestis-Stoffdatenbank: http://gestis.itrust.de/nxt/gateway.dll/gestis_de/000000.xml?f=templates$fn=default.htm$vid=gestisdeu:sdbdeu$3.0 (acess 29. april 2015)

  15. [15]

    National institute of standards and technology: Nist chemistry WebBook, Nist standard reference database number 69, http://webbook.nist.gov/chemistry/, (acess 29. april 2015)

  16. [16]

    Bauer, K.; Heilmann, G.; Köpcke, G.; Reders, K.; Erwig, W.; Hunwartzen, I.; Möller, P.; Starke, K.: Abschlussbericht: Klopffestigkeitsbestimmung (ROZ und MOZ) von Alkoholen und Alkoholmischkraftstoffen in CFR-Prüfmotoren (German). In: DGMK Forschungsbericht 260-01, 1980

    Google Scholar 

  17. [17]

    Anderson, J. E.; Kramer, U.; Mueller, S. A.; Wallington, T. J.: Octane numbers of ethanol and methanol gasoline blends estimated from molar concentrations. In: Energy Fuels 24 (2010), no. 12, pp. 6576–6585

    Article  Google Scholar 

  18. [18]

    Hoppe, F.; Burke, U.; Thewes, M.; Heufer, A.; Kremer, F.; Pischinger S.: Tailor-Made Fuels from Biomass: Potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. In: Fuel 167 (2016), no. 5, pp. 160–117

    Google Scholar 

  19. [19]

    Thewes, M.; Mauermann, P.; Pischinger, S.; Bluhm, K.; Hollert, H.: Hydrocarbon raw emission characterization of a direct-injection spark ignition engine operated with alcohol and furan-based bio fuels. In: Proceedings of 9th International Colloquium Fuels, Bartz, W. J. (Editor), TAE Ostfildern, January 15–17, 2013

    Google Scholar 

  20. [20]

    Heitzig, S.; Weinebeck, A.; Murrenhoff, H.: Testing and prediction of material compatibility of biofuel candidates with elastomeric materials. In: SAE-Technical Paper 2015-01-9075, 2015

    Google Scholar 

  21. [21]

    Spindt, R. S.: Air fuel ratios from exhaust gas analysis. In: SAE Technical Paper 650507, 1965

    Google Scholar 

  22. [22]

    Bresenham, D.; Reisel, J.; Neusen, K.: Spindt air-fuel ratio method generalization for oxygenated fuels. In: SAE Technical Paper 982054, 1998

    Google Scholar 

  23. [23]

    Heywood, J. B.: Internal combustion engine fundamentals. New York: McGraw-Hill Inc.; 1988

    Google Scholar 

Download references

Thanks

This work was performed as part of the Cluster of Excellence Tailor-Made Fuels from Biomass, which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dipl.-Ing. Fabian Hoppe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoppe, F., Thewes, M., Kremer, F. et al. Tailor-made Fuels for Highly Boosted Gasoline Engines. ATZextra Worldw 21, 32–37 (2016). https://doi.org/10.1007/s40111-015-0512-5

Download citation

Keywords

  • Ethylene Propylene Diene Monomer
  • Ethylene Propylene Diene Monomer
  • Research Octane Number
  • Indicate Mean Effective Pressure
  • Conventional Gasoline