Skip to main content
Log in

New Experimental Methods for Measuring Suction and Chemical Potential of an Aqueous Solution of Ethanol in Soil

  • Technical Note
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

In this article we develop various experimental methods for measuring the suction and the chemical potential of water and ethanol in soil. The results obtained are in good agreement between the method using the filter paper and the sorption isotherm at low water contents. The precision is less good for the high water contents between the filter paper for water and the box of Richards for ethanol. To analyze the behavior of an ethanol solution in hygroscopic domain, we have used the chemical potential of each component and we showed that this thermodynamic quantity is highly sensitive to the presence of another component and to the surface layers. So, a new device called fragmentation activimeter has been used to measure all the parameters necessary to determine the chemical potential. The results obtained for all the methods are in good agreement with physical behavior of an aqueous solution of ethanol in hygroscopic soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

\({I}_{c}\) :

Consistency index (%)

\({I}_{p}\) :

Plasticity index (%)

\({m}_{i}\) :

Mass of a component i (Kg)

\({M}_{v}\) :

Molar weight of vapor (kg mol−1)

\({M}_{w}\) :

Molar weight of water (kg mol−1)

\(P\) :

Inside pressure (Pa)

\({P}^{0}\) :

Reference pressure (Pa)

\({P}_{0}\) :

Total pressure at state 0 (Pa)

\({P}_{0}^{\mathrm{air}}\) :

Air pressure at state 0 (Pa)

\({P}_{0}^{w}\) :

Water pressure at state 0 (Pa)

\({P}_{1}\) :

Total pressure at state 1 (Pa)

\({P}_{1}^{\mathrm{air}}\) :

Air pressure at state 1 (Pa)

\({P}_{1}^{e}\) :

Ethanol pressure at state 1 (Pa)

\({P}_{1}^{w}\) :

Water pressure at state 1 (Pa)

\({P}_{2}\) :

Total pressure at state 2 (Pa)

\({P}_{2}^{\mathrm{air}}\) :

Air pressure at state 2 (Pa)

\({P}_{2}^{e}\) :

Ethanol pressure at state 2 (Pa)

\({P}_{2}^{w}\) :

Water pressure at state 2 (Pa)

\({P}_{3}\) :

Total pressure at state 3 (Pa)

\({P}_{3}^{\mathrm{air}}\) :

Air pressure at state 3 (Pa)

\({P}_{3}^{e}\) :

Ethanol pressure at state 3 (Pa)

\({P}_{3}^{w}\) :

Water pressure at state 3 (Pa)

\({P}_{\ell}\) :

Liquid pressure (Pa)

\({P}_{v}\) :

Vapor pressure (Pa)

\({P}_{v\mathrm{sat}}\) :

Saturated vapor pressure (Pa)

\({P}_{w}\) :

Pressure of water (Pa)

\(R\) :

Ideal gas constant (J K−1 mol−1)

\(\mathrm{RH}\) :

Relative humidity (%)

\(S\) :

Entropy (J)

\(s\) :

Suction (Pa)

\({S}_{r}\) :

Degree of saturation (%)

\(T\) :

Temperature (K)

\(U\) :

Internal energy (J)

\(V\) :

Volume (m3)

\({V}_{0}\) :

Total volume at state 0 (m3)

\({V}_{1}\) :

Total volume at state 1 (m3)

\({V}_{2}\) :

Total volume at state 2 (m3)

w :

Water content (%)

\({w}_{L}\) :

Liquid limit (%)

\({w}_{p}\) :

Plasticity limit (%)

\({w}_{r}\) :

Residual water content (%)

\({w}_{\mathrm{sat}}\) :

Saturated water content (%)

\({\mu }_{i}\) :

Chemical potential of a component i (J kg−1)

\({\mu }_{i\alpha }\) :

Chemical potential of i in \(\alpha\) (J kg−1)

\({\mu }_{i\beta }\) :

Chemical potential of i in \(\beta\) (J kg−1)

\({\mu }_{\ell}\) :

Chemical potential of liquid (J kg−1)

\({\mu }_{\ell}^{0}\) :

Reference chemical potential of liquid (J kg−1)

\({\mu }_{v}\) :

Chemical potential of vapor (J kg−1)

\({\mu }_{v}^{0}\) :

Reference chemical potential of vapor (J kg−1)

\({\mu }_{w}\) :

Chemical potential of water (J kg−1)

\(\phi\) :

Porosity (%)

\({\rho }_{d}\) :

Apparent dry density (kg m−3)

\({\rho }_{h}\) :

Apparent humid density (kg m−3)

\({\rho }_{\ell}\) :

Apparent density of liquid (kg m−3)

\({\rho }_{s}\) :

Apparent density of solid (kg m−3)

\({\rho }_{w}\) :

Apparent density of water (kg m−3)

\({\rho }_{\mathrm{s}}^{*}\) :

Real density of solid (kg m−3)

References

  1. Piedrafita-Carnicer MV (2007) Les pollutions ponctuelles des sols : cas des stations-service dans la région de Bruxelles-capitale. Diplôme d’études spécialisées en gestion de l’environnement, université libre de Bruxelles pp 154

  2. Arnaud F, Serralongue J, Winiarski T, Desmet M, Parterne M (2006) Pollution au plomb dans la Savoie antique (II-IIIe S.apr. J.C) en relation avec une installation métallurgique de la cité de Vienne. Comptes Rendus Geosci 338(4):244–252

    Article  Google Scholar 

  3. Lozano AL, Cherblanc F, Cousin B, Bénet JC (2008) Experimental study and modeling of the water phase change kinetics in soils. Eur J Soil Sci 59:939–949

    Article  Google Scholar 

  4. Naon B, Bénet JC, Cousin B, Cherblanc F, Chammari A (2013) Evaporation of a volatile organic compound in a hygroscopic soil: influence of the airflow and its VOC vapour saturation. Eur J Environ Civ Eng 17(1):46–63

    Article  Google Scholar 

  5. Savadogo WP, Sedogo PM, Traore AS (2007) Anaerobic biodegradation of Sumithion an Organophophorus insecticide used in Burkina Faso agriculture by acclimatized indigenous bacteria. Pak J Biol Sci 10(11):1896–1905

    Article  Google Scholar 

  6. Houot S, Barruiso E, Sierra-Wittling C (1997) Influence of compost addition to soil on the behavior of herbicides. Pest Manag Sci 49(1):1–75

    Google Scholar 

  7. Bénet JC, Jamin F, El Youssoufi MS (2017) Chemical potential of a two component liquid in porous media: the case of unsaturated soil. Geomech Energy Environ 9:36–45

    Article  Google Scholar 

  8. Guillard V, Broyard B, Guilbert C, Gontard S (2003) Modelling of moisture transfer in a composite food: dynamic water properties in an intermediate a(w) porous product in contact with high a(w) filing. Ind Eng Chem Res 81:1090–1098

    Article  Google Scholar 

  9. Guggenheim EA (1965) Thermodynamique. Dunod, Paris

    Google Scholar 

  10. Anoua M, Ramirez-Martinez A, Cherblanc F, Bénet JC (2014) The use of chemical potential to describe water transfer in complex media with strong solid-liquid bonding. J Porous Med 102:111–122

    Article  Google Scholar 

  11. Job G, Hermann F (2006) Chemical potential-a quantity in search of recognition. Eur J Phys 27:353–371

    Article  Google Scholar 

  12. Bénet JC, Ramirez-Martinez A, Ouédraogo F, Cherblanc F (2012) Measurement of the chemical potential of a liquid in porous media. J Porous Med 15:1019–1029

    Article  Google Scholar 

  13. Boudlal O, Khattaoui M, Kichi H (2014) Caractérisation des Marnes de la Grande Kabylie (Algérie), Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014—Beauvais 8–10 juillet 2014

  14. Lozano AL, Cherblanc F, Cousin B, Benet JC (2008) Experimental study and modelling of the water phase change kinetics in soils. Eur J Soil Sci 59(5):939–949

    Article  Google Scholar 

  15. Ouoba S, Bénet JC (2022) Numerical modeling and simulation of water transfer in soil with low water contents. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-04460-w

    Article  Google Scholar 

  16. Ouoba S, Cherblanc F, Cousin B, Bénet JC (2010) A new experimental method to determine the sorption isotherm of a liquid in a porous medium. Environ Sci Technol 44:5915–5919

    Article  Google Scholar 

  17. Ouoba S, Cousin B, Cherblanc F, Bénet JC (2010) Une méthode mécanique pour mesurer la pression de vapeur d’équilibre de l’eau dans un milieu complexe. C R Méc 338:113–119

    Article  Google Scholar 

  18. Gardner R (1937) A method of measuring the capillary tension of soil moisture over a wide moisture range. Soil Sci 43:277–283

    Article  Google Scholar 

  19. Fawcett R, Collis-George R (1967) A filter paper method of determining the moisture characteristics of soil. Aust J Exp Agric Anim Husb 7:162–176

    Article  Google Scholar 

  20. McQueen IS, Miller RF (1968) Determination of a soil moisture potential” Water in the Unsaturated Zone, In: Rijtema PE and Wassink H (eds) International Association of Science and Hydrology 82: 277–283

  21. Greacen EL, Walker GR, Cook PG (1987) Evaluation of the filter paper method for measuring soil water suction. International on conference on measurement of soil and plan water status 137–143

  22. Sibley JW, Smyth GK, Williams DJ (1990) A new filter material for measuring soil suction. Geotech Test J 13(4):381–384

    Article  Google Scholar 

  23. Swarbrick GE, Balkema AA (1995) Measurement of soil suction using the filter paper method, Unsaturated soils: proceedings. Ist international conference on unsaturated soils Rotterdam Netherlands 653–658

  24. Houston SL, Houston WN, Wagner AN (1994) Laboratory filter paper suction measurements. Geotech Test J 17(2):185–194

    Article  Google Scholar 

  25. Leong EC, He L, Rahardjo H (2002) Factors affecting the filter paper method for total and matric suction measurements. Geotech Test J 25(3):322–333

    Google Scholar 

  26. Mùnoz-Castelblanco JA, Pereire JM, Delage P, Cuin YJ (2010) Suction measurements on a natural unsatured soil: a reappraisal of the filter paper method. Alonso, E.E & Gens, an unsatured soils-proc. Fifth. Int.Conf on Unsaturated Soils 707–712

  27. Nowamooz H, Masrouri F (2010) Influence of suction cycles on the soil fabric of compacted swelling soil. CR Geosci 342(12):901–910. https://doi.org/10.1016/j.crte.2010.10.003

    Article  Google Scholar 

  28. Mohsen A, Ghassem H, Farimah M (2013) The role of suction and degree of saturation on the hydro-mechanical response of a dual porosity silt–bentonite mixture. Appl Clay Sci 84:83–90. https://doi.org/10.1016/j.clay.2013.08.020

    Article  Google Scholar 

  29. Ouedraogo F, Cherblanc F, Naon B, Bénet JC (2013) Water transfer in soil at low water content, Is the local equilibrium assumption still appropriate? J Hydrol 492:117–127

    Article  Google Scholar 

  30. Harrison BA (1998) The effect of filter paper and psychrometer calibration techniques on soil Measurement. Proc Second Int Conf Satur Soils 1:362–367

    Google Scholar 

Download references

Acknowledgements

This research was supported by the University of Montpellier, the Centre National de la Recherche Scientifique (France) and the Joseph KI-ZERBO University, Ouagadougou (Burkina-Faso). Pr. Jean-Claude Benet deceased on July 27th 2019 while he was finishing this manuscript. This publication is an homage to its extensive contribution on this subject.

Funding

The authors state that there was no source of funding for the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Ouoba.

Ethics declarations

Conflict of interest

I state that there is no actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations that could inappropriately influence this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouoba, S., Bénet, JC. New Experimental Methods for Measuring Suction and Chemical Potential of an Aqueous Solution of Ethanol in Soil. Indian Geotech J 53, 678–685 (2023). https://doi.org/10.1007/s40098-022-00699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-022-00699-9

Keywords

Navigation