Skip to main content
Log in

Physical Modeling in Geotechnical Centrifuge of Foundations Supported on Diatomaceous Soils

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

Diatomaceous soil deposits have been found in different parts of the world. However, until recently, its applications only existed in the field of agricultural engineering and agronomy. Within geotechnical engineering, there are still few studies on the subject. In this context, the advances found in the literature highlight that these materials are characterized by presenting geotechnical responses different from those dictated by traditional soil mechanics. One of the points of interest is related to the high values of resistance to shear that they can present, even when they are within clay matrices. Therefore, it is necessary to investigate the behavior of these deposits so that the physical and mechanical responses can be known in detail when subjected to stresses transmitted by a foundation structure. Thus, this study employs reduced-scale models installed in a small diameter geotechnical centrifuge. The load and displacement trajectories of shallow and deep foundations in artificial soils built from a kaolin base with different dosages diatomaceous soils of different genesis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shiwakoti DR, Tanaka H, Tanaka M, Locat J (2002) Influences of diatom microfossils on engineering properties of soils. Soils Found 42(3):1–17. https://doi.org/10.3208/sandf.42.3_1

    Article  Google Scholar 

  2. Kempfert HG, Raithel M (2002) Experiences on dike foundations and land fills on very soft soils. In: Proceedings of the international workshop ISSMGE, Technical Committee TC, vol 36, pp 176–181

  3. Wiemer G, Kopf A (2017) Influence of diatom microfossils on sediment shear strength and slope stability. Geochem Geophys Geosyst 18(1):333–345. https://doi.org/10.1002/2016GC006568

    Article  Google Scholar 

  4. Caicedo B, Zuluaga D, Slebi C (2019) Effects of micro-features of fossil diatom on the macroscopic behaviour of soils. Géotech Lett 9(4):322–327. https://doi.org/10.1680/jgele.18.00204

    Article  Google Scholar 

  5. Sonyok DR (2015) Effect of diatoms on index properties, compressibility, suction, and stiffness of diatomite-kaolin mixtures. New Mexico State University

  6. Wang J, Yazdani E, Evans TM (2021) Case study of a driven pile foundation in diatomaceous soil. I. Site characterization and engineering properties. J Rock Mech Geotech Eng 13(2):431–445. https://doi.org/10.1016/j.jrmge.2020.10.006

    Article  Google Scholar 

  7. Yazdani E, Wang J, Evans TM (2021) Case study of a driven pile foundation in diatomaceous soil. II. Pile installation, dynamic analysis, and pore pressure generation. J Rock Mech Geotech Eng 13(2):446–456. https://doi.org/10.1016/j.jrmge.2020.10.005

    Article  Google Scholar 

  8. Consultants C (2017) Preliminary feasibility study: US 97 at Wickiup junction, La pine, Oregon

  9. Wiemer G, Moernaut J, Stark N, Kempf P, De Batist M, Pino M et al (2015) The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile. Int J Earth Sci 104(5):1439–1457. https://doi.org/10.1007/s00531-015-1144-8

    Article  Google Scholar 

  10. Elkateb T, Chalaturnyk R, Robertson PK (2003) An overview of soil heterogeneity: quantification and implications on geotechnical field problems. Can Geotech J 40(1):1–15. https://doi.org/10.1139/t02-090

    Article  Google Scholar 

  11. Bragov AM, Lomunov AK, Sergeichev IV, Tsembelis K, Proud WG (2008) Determination of physicomechanical properties of soft soils from medium to high strain rates. Int J Impact Eng 35(9):967–976. https://doi.org/10.1016/j.ijimpeng.2007.07.004

    Article  Google Scholar 

  12. Aksakal EL, Angin I, Oztas T (2012) Effects of diatomite on soil physical properties. CATENA 88(1):1–5. https://doi.org/10.1016/j.catena.2011.08.004

    Article  Google Scholar 

  13. Byrne BW, Cassidy MJ (2002) Investigating the response of offshore foundations in soft clay soils. In: International conference on offshore mechanics and arctic engineering, vol 36142, pp 263–275. https://doi.org/10.1115/OMAE2002-28057

  14. Diaz-Rodríguez JA (2011) Diatomaceous soils: monotonic behavior. In: Deformation characteristics of geomaterials, pp 865–871. IOS Press. https://doi.org/10.3233/978-1-60750-822-9-865

  15. Holler PR (1992) Consolidation characteristics and permeabilities of sediments from Japan Sea (Sites 798 and 799). In: Proceedings of the ocean drilling program science results, 127, vol 128, pp 1123–1133

  16. Hong ZS, Tateishi Y, Deng YF (2004) Relationship between entrance pore distribution and stress level of natural sedimentary diatomaceous soil. Rock Soil Mech 25(7):1023–1026

    Google Scholar 

  17. Ladd J, Moran K, Kroon D, Jarrad R, Chen M, Palmer-Julson A, Gleen C (1993) Porosity variation and consolidation on the Northeastern Australian margin. Proc ODP Sci Results 133:617–623

    Google Scholar 

  18. MacKillop AK, Moran K, Jarrett K, Farrell J, Murray D (1995) 16. Consolidation properties of equatorial Pacific Ocean sediments and their relationship to stress history and offsets in the leg 138 composite depth sections. In: Proceedings of the ocean drilling program, 138 Science results, vol 138, pp 357–369. https://doi.org/10.2973/odp.proc.sr.138.118.1995

  19. Day RW (1995) Engineering properties of diatomaceous fill. J Geotech Eng 121(12):908–910. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(908)

    Article  Google Scholar 

  20. Gao HX, Yin KL, Zhou CM (2007) Diatomite landslides stability analysis and time forecast. J Northwest Univ (Nat Sci Ed) 37(1):127–130

    Google Scholar 

  21. Caicedo B, Mendoza C, López F, Lizcano A (2018) Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. J Rock Mech Geotech Eng 10(2):367–379. https://doi.org/10.1016/j.jrmge.2017.10.005

    Article  Google Scholar 

  22. Slebi-Acevedo CJ, Zuluaga-Astudillo DA, Ruge JC, Castro-Fresno D (2021) Influence of the diatomite specie on the peak and residual shear strength of the fine-grained soil. Appl Sci 11(4):1352. https://doi.org/10.3390/app11041352

    Article  Google Scholar 

  23. Kempfert HG, Gebreselassie B (2006) Excavations and foundations in soft soils. Springer, Berlin

    MATH  Google Scholar 

  24. Wu J, Yang YS, Lin J (2005) Advanced tertiary treatment of municipal wastewater using raw and modified diatomite. J Hazard Mater 127(1–3):196–203. https://doi.org/10.1016/j.jhazmat.2005.07.016

    Article  Google Scholar 

  25. Ruge JC, Castro-Rincón W, Camacho-Tauta JF, Molina-Gómez FA (2019) Dependencia de las propiedades de retención de agua en suelos caoliníticos con contenidos de microalgas fosilizadas adicionadas artificialmente. In: Geotechnical engineering in the xxi century: lessons learned and future challenges. IOS Press, pp 780–787. https://doi.org/10.3233/STAL190112

  26. Tanaka H, Locat J (1999) A microstructural investigation of Osaka Bay clay: the impact of microfossils on its mechanical behaviour. Can Geotech J 36(3):493–508. https://doi.org/10.1139/t99-009

    Article  Google Scholar 

  27. Palomino AM, Kim S, Summitt A, Fratta D (2011) Impact of diatoms on fabric and chemical stability of diatom–kaolin mixtures. Appl Clay Sci 51(3):287–294. https://doi.org/10.1016/j.clay.2010.12.002

    Article  Google Scholar 

  28. Hong Z, Tateishi Y, Han J (2006) Experimental study of macro-and microbehavior of natural diatomite. J Geotech Geoenviron Eng 132(5):603–610. https://doi.org/10.1061/(asce)1090-0241(2006)132:5(603)

    Article  Google Scholar 

  29. Matthew Evans T, Moug D (2020) Diatomaceous soils: a less than cromulent engineering material. In: Geotechnics for sustainable infrastructure development. Springer, Singapore, pp 709–716

  30. Taylor RE (ed) (2018) Geotechnical centrifuge technology. CRC Press, Cambridge

    Google Scholar 

  31. Phillips E (1869) “De l’équilibre des solides élastiques,” Comptes Rendus à l’Académie des Sci. Paris 68, Académie des Sci. Paris

  32. Li J, Wang X, Guo Y, Yu XB (2019) Vertical bearing capacity of the pile foundation with restriction plate via centrifuge modelling. Ocean Eng 181:109–120. https://doi.org/10.1016/j.oceaneng.2019.04.026

    Article  Google Scholar 

  33. Garnier J, Gaudin C, Springman SM, Culligan PJ, Goodings D, Konig D et al (2007) Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int J Phys Model Geotech 7(3):01–23. https://doi.org/10.1680/ijpmg.2007.070301

    Article  Google Scholar 

  34. Allersma HGB (1994) The University of Delft geotechnical centrifuge. In: International conference centrifuge 94, pp 47–52

  35. Allersma HGB (1994) Development of miniature equipment for a small geotechnical centrifuge. Transp Res Rec 1432:99

    Google Scholar 

  36. Allersma HBG (1995) Simulation of subsidence in soil layers in a geotechnical centrifuge. IAHS Publ Ser Proc Rep Intern Assoc Hydrol Sci 234:117–126

    Google Scholar 

  37. Allersma HGB (1996) Using centrifuge research in analysing stability of dikes. Génie civil-génie côtier: IVèmes Journées nationales, Dinard, FR. Paralia 1:289–298

    Google Scholar 

  38. Kwa KA, Airey DW (2018) The development of a small centrifuge for testing unsaturated soils. In: Physical modelling in geotechnics. CRC Press, pp 513–518

  39. Airey DW, Barker R (2010) Development of a low-cost teaching centrifuge. In: Proceedings of the 7th international conference on physical modelling in geotechnics, pp 205–210

  40. Black JA, Clarke SD (2012) The development of a small-scale geotechnical teaching centrifuge

  41. Black JA, Tatari A, Hakhamaneshi M (2015) Centrifuge modelling of shallow foundations on firm over soft layered clay. In: Proceedings of the GeoQuebec 2015 conference. GeoQuebec 2015

  42. Caicedo B (2000) Geotechnical centrifuge applications to foundation engineering teaching. In: Proceedings of the 1st international conference on geotechnical engineering education and training, pp 271–274. Balkema. https://doi.org/10.1201/9781003078623-49

  43. Aiban SA, Znidarčić D (1995) Centrifugal modeling of bearing capacity of shallow foundations on sands. J Geotech Eng 121(10):704–712. https://doi.org/10.1061/(asce)0733-9410(1995)121:10(704)

    Article  Google Scholar 

  44. Wang X, Yang X, Zeng X (2017) Lateral response of improved suction bucket foundation for offshore wind turbine in centrifuge modelling. Ocean Eng 141:295–307. https://doi.org/10.1016/j.oceaneng.2017.06.048

    Article  Google Scholar 

  45. Ketcham SA, Black PB, Pretto R (1997) Frost heave loading of constrained footing by centrifuge modeling. J Geotech Geoenviron eng 123(9):874–880. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(874)

    Article  Google Scholar 

  46. Borghei A, Ghayoomi M, Turner M (2020) Centrifuge tests to evaluate seismic settlement of shallow foundations on unsaturated silty sand. In: Geo-congress 2020: geotechnical earthquake engineering and special topics, pp 198–207. American Society of Civil Engineers, Reston. https://doi.org/10.1061/9780784482810.022

  47. Borghei A, Ghayoomi M (2019) Centrifuge tests to evaluate dynamic impedance functions of square surface foundation. In: 7th international conference on earthquake geotechnical engineering, pp 1–8

  48. Qin J, Zeng X, Ming H (2016) Centrifuge modeling and the influence of fabric anisotropy on seismic response of foundations. J Geotech Geoenviron Eng 142(3):04015082. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001414

    Article  Google Scholar 

  49. Schofield AN (1980) Cambridge geotechnical centrifuge operations. Geotechnique 30(3):227–268. https://doi.org/10.1680/geot.1980.30.3.227

    Article  Google Scholar 

  50. Askarinejad A, Beck A, Springman SM (2015) Scaling law of static liquefaction mechanism in geocentrifuge and corresponding hydromechanical characterization of an unsaturated silty sand having a viscous pore fluid. Can Geotech J 52(6):708–720. https://doi.org/10.1139/cgj-2014-0237

    Article  Google Scholar 

  51. Viswanadham BVS, Razeghi HR, Mamaghanian J, Manikumar CHSG (2017) Centrifuge model study on geogrid reinforced soil walls with marginal backfills with and without chimney sand drain. Geotext Geomembr 45(5):430–446. https://doi.org/10.1016/j.geotexmem.2017.06.005

    Article  Google Scholar 

  52. Muir Wood D (2004) Experimental inspiration for kinematic hardening soil models. J Eng Mech 130(6):656–664. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(656)

    Article  Google Scholar 

  53. Vesic AS (1977) Design of pile foundations. NCHRP synthesis of highway practice (42)

  54. Vesic AS (1975) Bearing Capacity of Shallow Foundations, Foundation Engineering Handbook, ed. Winterkorn, FS and Fand, HY

  55. Caicedo B, Velásquez R, Monroy J (2004) Modelación física en centrífuga. Tercer encuentro de Ingenieros de Suelos y Estructuras

Download references

Funding

No outside funding or grants directly related to the research presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Camila Olarte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuluaga-Astudillo, D.A., Slebi-Acevedo, C.J., Ruge, J.C. et al. Physical Modeling in Geotechnical Centrifuge of Foundations Supported on Diatomaceous Soils. Indian Geotech J 53, 1–10 (2023). https://doi.org/10.1007/s40098-022-00663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-022-00663-7

Keywords

Navigation