Skip to main content
Log in

Effect of Smear Zone Characteristics on PVD-Improved Soft Soils Using Field Data and Numerical Simulations

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

This study presents the performance of improved soft soil with prefabricated vertical drains by considering smear zone characteristics in the Mahshahr preloading project as a case study. An observational approach was used to predict the ultimate settlement (Sult), and then the numerical simulations were carried out using ABAQUS software with equivalent vertical permeability (kve), to determine the effects of the smear zone properties (ds/dw and kh/ks). To this end, the sensitivity analysis in terms of settlement and excess pore pressure was conducted by considering different combinations of the smear zone properties, and the back-analysis procedure was used to estimate the best properties of the smear zone. The obtained results demonstrated that the smear zone properties significantly affected the settlement rate and the degree of consolidation. Hence, with increasing ds/dw, the difference between simulated settlement curves increased, and reducing kh/ks led to more dissipation of the excess pore pressure and an increase in the settlement rate. Furthermore, the best estimation of smear zone properties was predicted using the back-calculation that led to the good agreement of numerical simulation results compared to the measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

d m :

Diameter of the mandrel

d s :

Diameter of the smear zone

d w :

Equivalent diameter of the drain

D e :

Equivalent diameter of the unit cell

e 0 :

Initial void ratio

E :

Young’s modulus

E t :

Accumulative error

k h :

Permeability coefficient of undisturbed soil in the horizontal direction

k v :

Permeability coefficient of undisturbed soil in the vertical direction

k s :

Permeability coefficient of the smear zone in the horizontal direction

k ve :

Equivalent vertical permeability

l :

Drainage length

LL:

Liquid limit

m :

Permeability ratio

Μ :

Slope of failure line

n :

Number of the observation point

N :

Total number of observation points

O 90 :

Opening size

\(P_{{\text{c}}}^{\prime }\) :

Preconsolidation pressure

PL:

Plastic limit

q w :

Discharge capacity of PVD

s :

Extent ratio

S n :

Settlement at time tn

S t :

Field settlement

S t s :

Simulated settlement

S ult :

Ultimate settlement estimated by Asaoka’s method

t :

Thickness of PVD

U :

Degree of consolidation

w :

Width of a band-shaped PVD

β 0 :

Intercept in Asaoka’s method plot

β 1 :

Slope in Asaoka’s method plot

γ sat :

Saturated unit weight

Δt :

Time interval

κ :

Slope of the unloading–reloading line

λ :

Slope of the normal consolidation line

μ :

Factor of the PVD geometry

ν :

Poisson’s ratio

References

  1. Basu D, Prezzi M (2007) Effect of the smear and transition zones around prefabricated vertical drains installed in a triangular pattern on the rate of soil consolidation. Int J Geomech 7(1):34–43. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:1(34)

    Article  Google Scholar 

  2. Han J (2015) Principles and practice of ground improvement. Wiley, Hoboken

    Google Scholar 

  3. Kempfert HG, Gebreselassie B (2006) Excavations and foundations in soft soils. Springer-Verlag, Berlin

    MATH  Google Scholar 

  4. Wu HN, Shen SL, Ma L, Yin ZY, Horpibulsuk S (2015) Evaluation of the strength increase of marine clay under staged embankment loading: a case study. Mar Geor Geotech 33(6):532–541. https://doi.org/10.1080/1064119X.2014.954180

    Article  Google Scholar 

  5. Nicholson PG (2014) Soil improvement and ground modification methods. Butterworth-Heinemann, Waltham

    Google Scholar 

  6. Abuel-Naga HM, Pender MJ, Bergado DT (2012) Design curves of prefabricated vertical drains including smear and transition zones effects. Geotext Geomembr 32:1–9. https://doi.org/10.1016/j.geotexmem.2011.10.007

    Article  Google Scholar 

  7. Chai JC, Ong CY, Carter JP, Bergado DT (2013) Lateral displacement under combined vacuum pressure and embankment loading. Géotechnique 63(10):842–856. https://doi.org/10.1680/geot.12.P.060

    Article  Google Scholar 

  8. Indraratna B, Kan ME, Potts D, Rujikiatkamjorn C, Sloan SW (2016) Analytical solution and numerical simulation of vacuum consolidation by vertical drains beneath circular embankments. Comput Geotech 80:83–96. https://doi.org/10.1016/j.compgeo.2016.06.008

    Article  Google Scholar 

  9. Wang J, Fang Z, Cai Y, Chai JC, Wang P, Geng X (2018) Preloading using fill surcharge and prefabricated vertical drains for an airport. Geotext Geomembr 46(5):575–585. https://doi.org/10.1016/j.geotexmem.2018.04.013

    Article  Google Scholar 

  10. Xu BH, He N, Jiang YB, Zhou YZ, Zhan XJ (2020) Experimental study on the clogging effect of dredged fill surrounding the PVD under vacuum preloading. Geotext Geomembr 48(5):614–624. https://doi.org/10.1016/j.geotexmem.2020.03.007

    Article  Google Scholar 

  11. Lu Y, Chai JC, Ding WQ (2020) Predicting deformation of PVD improved deposit under vacuum and surcharge loads. Geotext Geomembr 48(1):32–40. https://doi.org/10.1016/j.geotexmem.2019.103502

    Article  Google Scholar 

  12. Basu P, Basu D, Prezzi M (2010) Analysis of PVD-enhanced consolidation with soil disturbance. Proc Inst Civ Eng ICE Ground Improv 163(4):237–249. https://doi.org/10.1680/grim.2010.163.4.237

    Article  Google Scholar 

  13. Choo YW, Kim JH, Park HI, Kim DS (2013) Development of a new asymmetric anchor plate for prefabricated vertical drain installation via centrifuge model tests. J Geotech Geoenviron Eng 139(6):987–992. https://doi.org/10.1061/(ASCE)gt.1943-5606.0000796

    Article  Google Scholar 

  14. Hird CC, Moseley VJ (2000) Model study of seepage in smear zones around vertical drains in layered soil. Géotechnique 50(1):89–97. https://doi.org/10.1680/geot.2000.50.1.89

    Article  Google Scholar 

  15. Zhou Y, Chai JC (2017) Equivalent ‘smear’effect due to non-uniform consolidation surrounding a PVD. Géotechnique 67(5):410–419. https://doi.org/10.1680/jgeot.16.P.087

    Article  Google Scholar 

  16. Chai JC, Rondonuwu SG (2015) Surcharge loading rate for minimizing lateral displacement of PVD improved deposit with vacuum pressure. Geotext Geomembr 43(6):558–566. https://doi.org/10.1016/j.geotexmem.2015.07.012

    Article  Google Scholar 

  17. Chu J, Yan SW, Yang H (2000) Soil improvement by the vacuum preloading method for an oil storage station. Géotechnique 50(6):625–632. https://doi.org/10.1680/geot.2000.50.6.625

    Article  Google Scholar 

  18. Rixner JJ, Kraemer SR, Smith AD (1986) Prefabricated vertical drains, vol I: engineering guidelines. Technical Report No. FHWA/RD-86/168. Turner-Fairbank Highway Research Center, Virginia

  19. Chai JC, Miura N (1999) Investigation of factors affecting vertical drain behavior. J Geotech Geoenviron Eng 125(3):216–226. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(216)

    Article  Google Scholar 

  20. Indraratna B, Chu J, Rujikiatkamjorn C (2015) Ground improvement case histories: embankments with special reference to consolidation and other physical methods. Butterworth-Heinemann, Waltham

    Google Scholar 

  21. Nguyen BP, Kim YT (2019) Radial consolidation of PVD-installed normally consolidated soil with discharge capacity reduction using large-strain theory. Geotext Geomembr 47(2):243–254. https://doi.org/10.1016/j.geotexmem.2019.01.008

    Article  Google Scholar 

  22. Bergado DT, Asakami H, Alfaro MC, Balasubramaniam AS (1991) Smear effects of vertical drains on soft Bangkok clay. J Geotech Eng 117(10):1509–1530. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:10(1509)

    Article  Google Scholar 

  23. Tan SA (1994) Hyperbolic method for settlements in clays with vertical drains. Can Geotech J 31(1):125–131. https://doi.org/10.1139/t94-014

    Article  Google Scholar 

  24. Indraratna B, Redana IW (1998) Laboratory determination of smear zone due to vertical drain installation. J Geotech Geoenviron Eng 124(2):180–184. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(180)

    Article  Google Scholar 

  25. Indraratna B, Sathananthan I, Rujikiatkamjorn C, Balasubramaniam AS (2005) Analytical and numerical modeling of soft soil stabilized by prefabricated vertical drains incorporating vacuum preloading. Int J Geomech 5(2):114–124. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:2(114)

    Article  Google Scholar 

  26. Rujikiatkamjorn C, Indraratna B, Chu J (2008) 2D and 3D numerical modeling of combined surcharge and vacuum preloading with vertical drains. Int J Geomech 8(2):144–156. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:2(144)

    Article  Google Scholar 

  27. Lam LG, Bergado DT, Hino T (2015) PVD improvement of soft Bangkok clay with and without vacuum preloading using analytical and numerical analyses. Geotext Geomembr 43(6):547–557. https://doi.org/10.1016/j.geotexmem.2015.07.013

    Article  Google Scholar 

  28. Chai JC, Shen SL, Liu MD, Yuan DJ (2018) Predicting the performance of embankments on PVD-improved subsoils. Comput Geotech 93:222–231. https://doi.org/10.1016/j.compgeo.2017.05.018

    Article  Google Scholar 

  29. Lester AM, Kouretzis GP, Sloan SW (2019) Finite element modelling of prefabricated vertical drains using 1D drainage elements with attached smear zones. Comput Geotech 107:235–254. https://doi.org/10.1016/j.compgeo.2018.09.007

    Article  Google Scholar 

  30. Espinosa-Santiago AL, Lopez-Acosta NP (2020) Performance monitoring and numerical assessment of a test embankment with preloading and vertical drains on Texcoco lacustrine soft clays. Geotext Geomembr 48(4):546–560. https://doi.org/10.1016/j.geotexmem.2020.03.001

    Article  Google Scholar 

  31. Hansbo S (1981) Consolidation of fine-grained soils by prefabricated drains. In: Proceedings of the 10th international conference on soil mechanics and foundation engineering, vol 3. Stockholm, pp 677–682

  32. Hansbo S (1997) Aspects of vertical drain design: Darcian or non-Darcian flow. Géotechnique 47(5):983–992. https://doi.org/10.1680/geot.1997.47.5.983

    Article  Google Scholar 

  33. Chai JC, Shen SL, Miura N, Bergado DT (2001) Simple method of modeling PVD-improved subsoil. J Geotech Geoenviron Eng 127(11):965–972. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(965)

    Article  Google Scholar 

  34. Colbond (2008) Product information of Colbonddrain CX1000, ED-354-GB-A-01. Colbond Company, Arnhem, Gelderland

  35. Asaoka A (1978) Observational procedure of settlement prediction. Soils Found 18(4):87–101. https://doi.org/10.3208/sandf1972.18.4_87

    Article  Google Scholar 

  36. Indraratna B, Bamunawita C, Khabbaz H (2004) Numerical modeling of vacuum preloading and field applications. Can Geotech J 41(6):1098–1110. https://doi.org/10.1139/T04-054

    Article  Google Scholar 

  37. Kumarage PI, Gnanendran CT (2019) Long-term performance predictions in ground improvements with vacuum assisted Prefabricated Vertical Drains. Geotext Geomembr 47(2):95–103. https://doi.org/10.1016/j.geotexmem.2018.11.002

    Article  Google Scholar 

  38. Nguyen BP, Do TH, Kim YT (2020) Large-strain analysis of vertical drain-improved soft deposit consolidation considering smear zone, well resistance, and creep effects. Comput Geotech 123:103602. https://doi.org/10.1016/j.compgeo.2020.103602

    Article  Google Scholar 

  39. Saowapakpiboon J, Bergado DT, Voottipruex P, Lam LG, Nakakuma K (2011) PVD improvement combined with surcharge and vacuum preloading including simulations. Geotext Geomembr 29(1):74–82. https://doi.org/10.1016/j.geotexmem.2010.06.008

    Article  Google Scholar 

  40. Alielahi H, Maleki M, Mehrshahi K (2021) Performance evaluation of a surcharge preloading project based on back-analysis of field monitoring and numerical assessment. Arab J Geosci 14(21):1–19. https://doi.org/10.1007/s12517-021-08529-7

    Article  Google Scholar 

  41. Carrillo N (1942) Simple two and three dimensional case in the theory of consolidation of soils. J Math Phys 21(1–4):1–5. https://doi.org/10.1002/sapm19422111

    Article  Google Scholar 

  42. Hansbo S (1979) Consolidation of clay by band-shaped prefabricated drains. Ground Eng 12(5):16–25

    Google Scholar 

  43. Long RP, Covo A (1994) Equivalent diameter of vertical drains with an oblong cross section. J Geotech Eng 120(9):1625–1630. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1625)

    Article  Google Scholar 

  44. Pradhan TBS, Imai G, Murata T, Kamon M, Suwa S (1993) Experiment study on the equivalent diameter of a prefabricated band-shaped drain. In: Proceedings of the 11th Southeast Asian geotechnical conference, vol 1. Singapore, pp 391–396

  45. Bergado DT, Mukherjee K, Alfaro MC, Balasubramaniam AS (1993) Prediction of vertical-band-drain performance by the finite-element method. Geotext Geomembr 12(6):567–586. https://doi.org/10.1016/0266-1144(93)90044-O

    Article  Google Scholar 

  46. Bo MW, Chu J, Low BK, Choa V (2003) Soil improvement: prefabricated vertical drain techniques. Thomson, Singapore

    Google Scholar 

  47. Hansbo S (1987) Design aspects of vertical drains and lime column installations. In: Proceedings of 9th Southeast Asian geotechnical conference, vol 2. Bangkok, pp 1–12

  48. Indraratna B, Redana IW (1997) Plane-strain modeling of smear effects associated with vertical drains. J Geotech Geoenviron Eng 123(5):474–478. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(474)

    Article  Google Scholar 

  49. Jamiolkowski M, Lancellotta R (1981) Consolidation by vertical drains: uncertainties involved in prediction of settlement rates. In: Proceedings of the 10th international conference on soil mechanics and foundation engineering, vol 1. Stockholm, pp 345–451

  50. Sathananthan I, Indraratna B, Rujikiatkamjorn C (2008) Evaluation of smear zone extent surrounding mandrel driven vertical drains using the cavity expansion theory. Int J Geomech 8(6):355–365. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(355)

    Article  Google Scholar 

  51. Sharma JS, Xiao D (2000) Characterization of a smear zone around vertical drains by large-scale laboratory tests. Can Geotech J 37(6):1265–1271. https://doi.org/10.1139/t00-050

    Article  Google Scholar 

  52. Jamiolkowski M, Lancellotta R, Wolski W (1983) Precompression and speeding up consolidation. In: Proceedings of the 8th European conference on soil mechanics and foundation engineering, vol 3, Special Session No. 6. Helsinki, pp 1201–1226

  53. Madhav MR, Park YM, Miura N (1993) Modelling and study of smear zones around band-shaped drains. Soils Found 33(4):135–147. https://doi.org/10.3208/sandf1972.33.4_135

    Article  Google Scholar 

  54. Parsa-Pajouh A, Fatahi B, Vincent P, Khabbaz H (2014) Trial embankment analysis to predict smear zone characteristics induced by prefabricated vertical drain installation. Geotech Geol Eng 32(5):1187–1210. https://doi.org/10.1007/s10706-014-9789-9

    Article  Google Scholar 

  55. Hibbitt HD, Karlsson BI, Sorensen EP (2016) ABAQUS 2016 user’s manual. Hibbitt, Karlsson & Sorensen Inc, Pawtucket

    Google Scholar 

  56. Roscoe KH, Burland JB (1968) On the generalized stress-strain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering Plasticity. Cambridge University Press, Cambridge, pp 535–609

    Google Scholar 

  57. Chu J, Yan SW (2005) Estimation of degree of consolidation for vacuum preloading projects. Int J Geomech 5(2):158–165. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:2(158)

    Article  Google Scholar 

  58. Chu J, Bo MW, Arulrajah A (2009) Soil improvement works for an offshore land reclamation. Proc Inst Civ Eng (ICE) Geotech Eng 162(1):21–32. https://doi.org/10.1680/geng.2009.162.1.21

    Article  Google Scholar 

  59. Shen SL, Chai JC, Hong ZS, Cai FX (2005) Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement. Geotext Geomembr 23(6):463–485. https://doi.org/10.1016/j.geotexmem.2005.05.002

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Alielahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, M., Alielahi, H. & Rahmani, I. Effect of Smear Zone Characteristics on PVD-Improved Soft Soils Using Field Data and Numerical Simulations. Indian Geotech J 52, 1391–1409 (2022). https://doi.org/10.1007/s40098-022-00645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-022-00645-9

Keywords

Navigation