Skip to main content
Log in

Behaviour of Geocell-Reinforced Sand Under Shear Loading

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

This study analyses the geocell–sand interface shear behaviour by carrying out various experiments using a large-scale direct shear test setup. Three different PVC polymers were used for fabricating the geocell. Locally available river sand was selected as the base material for experimental investigation. The testing programme mainly includes determining interface shear properties of reinforced and unreinforced sand under three different normal stresses (100 kPa, 150 kPa, 200 kPa). The shear performance of geocell-reinforced sand was investigated in the laboratory by varying the aperture size, height, position, shape and strength of the geocell layer. Experimental results have confirmed that all the parameters considered for the study have a significant role in improving shear parameters at the geocell–sand interface. The geocell-reinforced sand exhibits apparent cohesion, and this apparent cohesion may be interpreted as the cohesion mobilised due to confinement provided by the geocell against lateral movement. The friction angle of geocell-reinforced sand was also improved due to the provision of geocell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Material

Data will be made available at the reasonable request.

Abbreviations

C c :

Coefficient of curvature

C u :

Uniformity coefficient

D 10 :

Effective grain size

D 50 :

Mean grain size

G :

Specific gravity

P1:

Polymer 1

P2:

Polymer 2

P3:

Polymer 3

T :

The tensile strength of geocell

h :

Height of geocell

d :

The aperture size of geocell

δ :

Interface friction angle

σ :

Normal stress

τ rs :

Peak shear stress of geocell-reinforced sand

τ us :

Peak shear stress of unreinforced sand

Φ :

Friction angle

α :

Interface shear strength coefficient

c a :

Apparent cohesion

References

  1. Bathurst RJ, Karpurapu R (1993) Large-scale triaxial compression testing of geocell-reinforced granular soils. Geotech Test J 16(3):296–330

    Article  Google Scholar 

  2. Rajagopal K, Krishnaswamy NR, Latha GM (1999) Behaviour of sand confined with single and multiple geocells. Geotext Geomembr 17:171–184. https://doi.org/10.1016/S0266-1144(98)00034-X

    Article  Google Scholar 

  3. Madhavi Latha G, Murthy VS (2007) Effects of reinforcement form on the behaviour of geosynthetic reinforced sand. Geotext Geomembr 25(1):23–32. https://doi.org/10.1016/j.geotexmem.2006.09.002

    Article  Google Scholar 

  4. Chen H (2013) Confinement effect of geocells on sand samples under triaxial compression. Geotext Geomembr 37:35–44. https://doi.org/10.1016/j.geotexmem.2013.01.004

    Article  Google Scholar 

  5. Dash SK, Krishnaswamy NR, Rajagopal K (2001) Bearing capacity of strip footings supported on geocell-reinforced sand. Geotext Geomembr 19(4):235–256. https://doi.org/10.1016/S0266-1144(01)00006-1

    Article  Google Scholar 

  6. Dash SK, Krishnaswamy NR, Rajagopal K (2001) Strip footing on geocell reinforced sand beds with additional planar reinforcement. Geotext Geomembr 19(8):529–538. https://doi.org/10.1016/S0266-1144(01)00022-X

    Article  Google Scholar 

  7. Dash SK, Sireesh S, Sitharam TG (2003) Model studies on circular footing supported on geocell reinforced sand underlain by soft clay. Geotext Geomembr 21(4):197–219. https://doi.org/10.1016/S0266-1144(03)00017-7

    Article  Google Scholar 

  8. Dash SK (2012) Effect of geocell type on load-carrying mechanisms of geocell-reinforced sand foundations. Int J Geomech 12(5):537–548. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000162

    Article  MathSciNet  Google Scholar 

  9. Madhavi Latha G, Somwanshi A (2009) Effect of reinforcement form on the bearing capacity of square footing on sand. Geotext Geomembr 27(6):409–422. https://doi.org/10.1016/j.geotexmem.2009.03.005

    Article  Google Scholar 

  10. Hedge A, Sitharam TG (2013) Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds. Int J Geotech Eng 7(4):346–354. https://doi.org/10.1179/1938636213Z.00000000043

    Article  Google Scholar 

  11. Hedge A, Sitharam TG (2015) Experimental and analytical studies on soft clay beds reinforced with bamboo cells and geocells. Int J Geosynth Ground Eng 1(2):1–13. https://doi.org/10.1007/s40891-015-0015-5

    Article  Google Scholar 

  12. Sherin KS, Chandrakaran S, Sankar N (2017) Effect of geocell geometry and multi-layer system on the performance of geocell reinforced sand under a square footing. Int J Geosynth Ground Eng 3:20. https://doi.org/10.1007/s40891-017-0097-3

    Article  Google Scholar 

  13. Sireesh S, Sitharam TG, Dash SK (2009) Bearing capacity of circular footing on geocell–sand mattress overlying clay bed with void. Geotext Geomembr 27(2):89–98. https://doi.org/10.1016/j.geotexmem.2008.09.005

    Article  Google Scholar 

  14. Sitharam TG, Sireesh S, Dash SK (2011) Model studies of a circular footing supported on geocell-reinforced clay. Can Geotech J 42(2):693–703. https://doi.org/10.1139/t04-117

    Article  Google Scholar 

  15. Sitharam TG, Sireesh S (2005) Behavior of embedded footings supported on geogrid cell reinforced foundation beds. Geotech Test J 28(5):452–463. https://doi.org/10.1520/GTJ12751

    Article  Google Scholar 

  16. Moghaddas Tafreshi SN, Dawson AR (2010) Comparison of bearing capacity of a strip footing on sand with geocell and planar forms of geotextile reinforcement. Geotext Geomembr 28(1):72–84. https://doi.org/10.1016/j.geotexmem.2009.09.003

    Article  Google Scholar 

  17. Moghaddas Tafreshi SN, Dawson AR (2012) A comparison of static and cyclic loading responses of foundations on geocell-reinforced sand. Geotext Geomembr 32:55–68. https://doi.org/10.1016/j.geotexmem.2011.12.003

    Article  Google Scholar 

  18. Lopes ML, Silvano R (2010) Soil/geotextile interface behaviour in direct shear and pullout movements. Geotech Geol Eng 28:791–804. https://doi.org/10.1007/s10706-010-9339-z

    Article  Google Scholar 

  19. Liu C, Zornberg JG, Chen T-C, Ho Y, Lin B (2009) Behavior of Geogrid-Sand Interfaces in Direct Shear Mode. J Geotech Geoenviron Eng ASCE 135(12):1863–1871. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000150

    Article  Google Scholar 

  20. Ferreira FB, Vieira CS, Lopes ML (2015) Direct shear behaviour of residual soil—geosynthetic interfaces—influence of soil moisture content, soil density and geosynthetic type. Geosynth Int 22(3):257–272. https://doi.org/10.1680/gein.15.00011

    Article  Google Scholar 

  21. Manju GS, Madhavi Latha G (2013) Interfacial friction properties of geocell reinforced sand. Int J Innov Res Sci Eng Technol 2(1):25–31

    Google Scholar 

  22. Mehrjardi GT, Motarjemi F (2018) Interfacial properties of geocell-reinforced granular soils. Geotext Geomembr 46(4):384–395. https://doi.org/10.1016/j.geotexmem.2018.03.002

    Article  Google Scholar 

  23. Isik A, Gurbuz A (2020) Pullout behavior of geocell reinforcement in cohesionless soils. Geotext Geomembr 48(1):71–81. https://doi.org/10.1016/j.geotexmem.2019.103506

    Article  Google Scholar 

  24. ASTM D4253-16. Standard test methods for maximum index density and unit weight of soils using a vibratory table

  25. ASTM D638-14. Standard test method for tensile properties of plastics. American Society for Testing and Materials, West Conshohocken, PA, USA

  26. ASTM D5321-13. Standard test method for determining the shear strength of soil–geosynthetic and geosynthetic–geosynthetic interfaces by direct shear. ASTM Int 1–11

  27. Liu C-N, Ho Y-H, Huang J-W (2009) Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotext Geomembr 27(1):19–30. https://doi.org/10.1016/j.geotexmem.2008.03.002

    Article  Google Scholar 

  28. Liu C-N, Zornberg JG, Chen T, Ho Y, Lin B (2009) Behaviour of geogrid-sand interface in direct shear mode. J Geotech Geoenviron Eng 135(12):1863–1871. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000150

    Article  Google Scholar 

  29. Makkar FM, Chandrakaran S, Sankar N (2017) Performance of 3-D geogrid-reinforced sand under direct shear mode. Int J Geotech Eng 13(3):227–235. https://doi.org/10.1080/19386362.2017.1336297

    Article  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Sherin K S was involved in concept formation, methodology, experimental investigations and related computations, writing of the paper. N Sankar and S Chandrakaran contributed to concept formation and supervision.

Corresponding author

Correspondence to K. S. Sherin.

Ethics declarations

Conflict of interest

Authors declare that there is no financial or personal conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherin, K.S., Sankar, N. & Chandrakaran, S. Behaviour of Geocell-Reinforced Sand Under Shear Loading. Indian Geotech J 52, 1292–1312 (2022). https://doi.org/10.1007/s40098-022-00620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-022-00620-4

Keywords

IGC Keywords

Navigation