Skip to main content
Log in

Geotechnical Characterization of the Marchica Lagoon Site (Nador, Northeastern Morocco) and Detection of Potential Problems

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

In this paper, a geotechnical characterization of the superficial formations surrounding the Marchica lagoon (Nador, NE of Morocco) is presented. Five zones that have similar geotechnical characteristics are identified, and for each zone, a geotechnical model has been built from the results of in situ and laboratory geotechnical tests. The barrier zone is the only zone with an abundance of sand that can reach major depths (> 30 m), the Bou-Areg and Arekman zone is constituted by silty clays that can reach 30 m. The Atalayoun zone is geotechnically, the unfavorable zone, the plasticity of the clay deposit, which can reach a thickness of 8.5 m, is relatively high, and with a density of 990 kg/m3. This type of soil can create serious geotechnical problems. The latter zone is an area with an abundance of volcanic rock. Based on geotechnical characterization and modeling, a geotechnical database has been created to build thematic maps using GIS software to facilitate the interpretation of results. Several geotechnical problems have been detected through conventional and non-conventional methods in the different delimited zones, such as the low bearing capacity of the soil, settlement, and liquefaction. These results constitute an essential tool for preliminary geotechnical studies in this area. In addition, the model obtained in this work will be helpful for the optimization of geotechnical investigation campaigns. Therefore, this paper will be useful for the facilitation of decision-making by the authorities responsible for the development and urban planning in this area. Furthermore, the final product of this study can also be used as a methodological reference to approach the treatment of geotechnical problems in lagoons and coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Delgado J, Alfaro P, Andreu JM, Cuenca A, Doménech C, Estévez A, Soria JM, Tomas R, Yébenesa A (2003) Engineering-geological model of the Segura River flood plain (SE Spain): a case study for engineering planning. Eng Geol 68:171–187

    Article  Google Scholar 

  2. International Association of Engineering Geology (1976) Commission on engineering geological maps. Engineering geological maps; a guide to their preparation; earth sciences, vol 15. The UNESCO Press, Paris

    Google Scholar 

  3. Jannuzzi GMF, Danziger FAB, Martins ISM (2015) Geological-geotechnical characterisation of Sarapuí II clay. Eng Geol 190:77–86

    Article  Google Scholar 

  4. Fookes PG (1997) Geology for engineers: the geological model, prediction and performance. Q J Eng Geol Hydrogeol 30(4):293–424

    Article  Google Scholar 

  5. Mollah MA (1993) Geotechnical conditions of the deltaic alluvial plains of Bangladesh and associated problems. Eng Geol 36(1–2):125–140

    Article  Google Scholar 

  6. Bozzano F, Andreucci A, Gaeta M, Salucci R (2000) A geological model of the buried Tiber River valley beneath the historical centre of Rome. Bull Eng Geol Environ 59(1):1–21

    Article  Google Scholar 

  7. Griffiths JS (2001) Land surface evaluation for engineering practice. Geological Society, Bath

    Google Scholar 

  8. Jinung D, Ong H, Yeo-won Y, Ilhan C (2018) Geotechnical design parameter evaluation using the alluvial plain characteristics in southeastern Iraq. Arab J Geosci 11(20):647

    Article  Google Scholar 

  9. Tzampoglou P, Loupasakis C (2018) Evaluating geological and geotechnical data for the study of land subsidence phenomena at the perimeter of the Amyntaio coalmine, Greece. Int J Min Sci Technol 28(4):601–612

    Article  Google Scholar 

  10. Azougay A, Rezqi H, Oujidi M (2020) The use of a geographic information system to study geotechnical problems in urban areas. E3S Web Conf 150:03002

    Article  Google Scholar 

  11. Gönenç IE, Wolflin JP (2005) Coastal lagoons ecosystem processes and modeling for sustainable use and development. CRC Press, Boca Raton

    Google Scholar 

  12. Kjerfve B (1994) Coastal lagoon processes. Elsevier oceanography series. Elsevier, Amsterdam

    Google Scholar 

  13. Bird ECF (1994) Chapter 2-coastal lagoon processes. In: Kjerfve B (ed) Coastal lagoon processes, vol 60. Elsevier oceanography series. Elsevier, Amsterdam, pp 9–39

    Chapter  Google Scholar 

  14. El Mandour A, El Yaouti F, Fakir Y, Zarhloule Y, Benavente J (2008) Evolution of groundwater salinity in the unconfined aquifer of Bou-Areg, Northeastern Mediterranean coast, Morocco. Environ Geol 54(3):491–503

    Article  Google Scholar 

  15. Guillemin M, Houzay J (1982) Le Néogène postnappes et le quaternaire du Rif nord oriental: stratigraphie et tectonique des bassins de Melilla, du Kert, de Boudinar et du piedmont des Kebdana. Notes Mém Serv Géol Maroc 314:7–239

    Google Scholar 

  16. Mahjoubi R (1991) Evolution de la dynamique sédimentaire d’un système lagunaire microtidal pendant l’holocène: lagune de Nador (Maroc nord-oriental). Sidi Abdellah, Fes

    Google Scholar 

  17. Hernandez J, Bellon H (1985) Chronologie K-Ar du volcanisme miocène du Rif oriental (Maroc): implications tectoniques et magmatologiques. Géol Dyn Géogr Phys 26:85–94

    Google Scholar 

  18. Hernandez J (1983) Le volcanisme miocène du Rif oriental (Maroc): géologie, pétrologie et minéralogie d’une province shoshonitique, Paris VI

  19. Raji O (2014) Événements extrêmes du passé et paléoenvironnements: reconstitution à partir des archives sédimentaires de la lagune de Nador, Maroc

  20. Bloundi M (2005) Etude géochimique de la lagune de Nador (Maroc oriental): impacts des facteurs anthropiques, Mohammed V

  21. Kerchaoui S (1985) Etude géologique et structurale du massif des Béni Bou Ifrour, Rif oriental, Paris sud

  22. Yahyaoui AM, Dakki M, Hoepffner C, Demnati A (1997) Le Bassin du Gareb-Bou-Areg (Rif Oriental): une région—clé pour l’interprétation de la structuration alpine de la chaîne rifaine. Géol Méditerr 24(1–2):73–92

    Article  Google Scholar 

  23. Paquet H (1970) Evolution géochimique des sédiments argileux dans les altérations et les sols des climats méditerranéens et tropicaux à saisons contrastées. Mém Serv Cart Géol Als-Lorr 30:31–42

    Google Scholar 

  24. Azdimousa A, Bourgois J (1993) Les communications entre l’Atlantique et la Méditerranée par le couloir sud-rifain du Tortonien à l’actuel: stratigraphie séquentielle des bassins néogènes de la région du cap des Trois Fourches (Rif Oriental, Maroc). J Afr Earth Sci 17(2):233–240

    Article  Google Scholar 

  25. Choubert G, Faure-Muret A, Hottinger L, Lecointre G (1966) Le Néogène du bassin de Melilla (Maroc septentrional) et sa signification pour définir la limite mio-pliocène au Maroc. Comm Medit Neogene Strat, no. ICS-IUGS, pp 238–249

  26. Irzi Z (2002) Les environnements du littoral méditerranéen oriental du Maroc compris entre l’oued Kiss et le Cap des Trois Fourches; Dynamique sédimentaire et étude d’impact des sites aménagés et l’analyse des associations de foraminifères benthiques de la lagune de N. University, Oujda

    Google Scholar 

  27. Irzi Z (1987) Etude sédimentologique et micropaléontologique de la lagune de Nador (Maroc oriental). University Pièrre et Marrie currie, Paris VI, Paris

    Google Scholar 

  28. Tesson M, Gensous B (1978) Les sédiments superficiels de la lagune de Nador (sebkha de Bou Areg) principales caractéristiques et répartition. Bull Inst Pêches Maroc 24

  29. EL-Alami M, Mahjoubi R, Damnati B, Kamel S, Icole M, Taieb M (1998) Sédimentologie et géochimie organique des sédiments superficiels de la lagune de Nador (Maroc nord oriental). J Afr Earth Sci 26(2):249–259

    Article  Google Scholar 

  30. Mahjoubi R (2001) Nature et origine du flux de matière particulaire et son enregistrement dans un milieu paralique microtidal: cas de la lagune de Nador (Maroc nord oriental). Université Moulay Ismail, Meknes

    Google Scholar 

  31. Bloundi MK, Faure P, Duplay J (2008) Organic contamination identification in sediments from a mediterranean coastal ecosystem: the case of the Nador lagoon (Eastern Morocco). Comptes Rendus Geosci 340(12):840–849

    Article  Google Scholar 

  32. Raji O, Dezileau L, Tessier B, Niazi S, Snoussi M, Von Grafenstein U, Poujol A (2018) Climate and tectonic-driven sedimentary infill of a lagoon as revealed by high resolution seismic and core data (the Nador lagoon, NE Morocco). Mar Geol 398(Nonember 2017):99–111

    Article  Google Scholar 

  33. Galindo-Zaldívar J (2016) La tectónica reciente y activa de la región de Al Hoceima (Cordillera del Rif). In: La sismicité de la région d’Al Hoceima: évaluation des aléas et de la vulnérabilité, p 56

  34. Frizon de Lamotte D (1985) La structure du Rif Oriental (Maroc) Role de la tectonique longitudinale et importance des fluides. Université Pierre et Marie Curie, Paris

    Google Scholar 

  35. Leblanc D, Olivier P (1984) Role of strike-slip faultts in the Betic-Rifian orogeny. Tectonophysics 101:345–355

    Article  Google Scholar 

  36. Poujol A, Ritz J, Tahayt A, Vernant P, Condomines M, Blard P, Billant J, Vacher L, Tibari B, Hni L, Idrissi A (2014) Active tectonics of the Northern Rif (Morocco) from geomorphic and geochronological data. J Geodyn 77:70–88

    Article  Google Scholar 

  37. Galindo-Zaldívar J, Chalouan A, Azzouz O, Sanz de Galdeano C, Anahnah F, Ameza L, Pedrera RPA, Ruiz-Constán A, Marín-Lechado C, Benmakhlouf M, López-Garrido A, Ahmamou M, Saji R, Roldán-García F, Akil M, Chabli A (2009) Are the seismological and geological observations of the Al Hoceima (Morocco, Rif) 2004 earthquake (M = 6.3) contradictory? Tectonophysics 475:59–67

    Article  Google Scholar 

  38. Galindo-Zaldívar J, Azzouz O, Chalouan A, Pedrera A, Ruano P, Ruiz-Constán A, Sanz de Galdeano C, Marín-Lechado C, López-Garrido A, Anahnah F, Benmakhlouf M (2015) Extensional tectonics, graben development and fault terminations in the eastern Rif (Bokoya–Ras Afraou area). Tectonophysics 663:140–149

    Article  Google Scholar 

  39. Reglement parasismique (2011) RPS 2000 version révisée 2011

  40. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep Railw Tech Res Inst 30(1):25–33

    Google Scholar 

  41. Nakamura Y (2008) On the H/V spectrum

  42. Scherrer P (1918) Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math Klasse 2:98–100

    Google Scholar 

  43. Bustamante M, Gianeselli L (1971) Bulletin de liaison des laboratoires des ponts et chaussées. Bull Liaison Lab Ponts Chauss, 113

  44. Reissner H (1924) Zum Erddruckproblem. In: Proceedings of 1st international congress for applied mechanics, pp 295–311

  45. Terzaghi K (1943) Theoretical soil mechanics. Wiley, Hoboken

    Book  Google Scholar 

  46. El May M, Dlala M, Chenini I (2010) Urban geological mapping: geotechnical data analysis for rational development planning. Eng Geol 116:129–138

    Article  Google Scholar 

  47. Valverde-Palacios I, Valverde-Espinosa I, Irigaray C, Chacón J (2014) Geotechnical map of Holocene alluvial soil deposits in the metropolitan area of Granada (Spain): a GIS approach. Bull Eng Geol Environ 73(1):177–192

    Article  Google Scholar 

  48. Kumar K (2008) Basic geotechnical earthquake engineering. New Age International Publishers, New Delhi

    Google Scholar 

  49. Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River

    Google Scholar 

  50. Wang WS (1979) Some findings in soil liquefaction. Earthquake Engineering Department, Water Conservancy and Hydroelectric Power Scientific Research Institute, p17

  51. Rosa-Cintas S, Clavero D, Delgado J, López-Casado C, Galiana-Merino JJ (2015) Garrido J (2017) Characterization of the shear wave velocity in the metropolitan area of Malaga (S Spain) using the H/V technique. Soil Dyn Earthq Eng 92:433–442

    Article  Google Scholar 

Download references

Acknowledgements

A part of this research was carried out with a mobility grant from the University of Granada (Spain) in the framework of the Erasmus + program. The authors are also very grateful to the Marchica Lagoon Development Agency and the Moroccan Public Testing and Investigation Laboratory (LPEE) for providing the geotechnical information used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Azougay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azougay, A., El Hamdouni, R., Rezqi, H. et al. Geotechnical Characterization of the Marchica Lagoon Site (Nador, Northeastern Morocco) and Detection of Potential Problems. Indian Geotech J 50, 1006–1023 (2020). https://doi.org/10.1007/s40098-020-00439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-020-00439-x

Keywords

Navigation