Skip to main content

Advertisement

Log in

Fabrication of reduced graphene oxide-doped carbon aerogels from water hyacinth for removal of methylene blue in water and energy storage

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The development of industries has caused severe impacts on the environment and increased the demand of using energy. In this work, reduced graphene oxide-doped water hyacinth carbon aerogels (rGO/WHCA) were synthesized by cross-linking cellulose with poly(vinyl alcohol) as a binder and addition of graphene oxide (GO) as rGO precursors, followed by freeze-drying and pyrolysis techniques. The obtained materials were studied for adsorption of methylene blue (MB) in water and applied as electrodes for the supercapacitor. The impact of GO content on the characteristics, adsorption performance, and electrochemical properties of the rGO/WHCA were investigated. Besides, the concurrent effects of the adsorption time, and MB concentration on the adsorption capacity were evaluated via the response surface methodology according to the Box–Behnken model. The obtained rGO/WHCA materials exhibited ultralow density, high porosity, and an abundance of meso- and micropores structures. Especially, rGO/WHCA materials showed a great ability for removing MB in water with the highest adsorption capacity up to 95.03 mg/g after 420 min with the initial MB concentration of 150 ppm at pH 9 and performed the electrical double-layer capacitors (EDLCs) in a three-electrode system with an outstanding specific capacitance of 272.08 F/g at current density of 0.5 A/g. The obtained results open a potential pathway of using biomass sources, like water hyacinth, for solving environmental issues and the demand for energy storage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. An, T.N.M., Phuc, T.T., Nhi, D.N.T., van Cuong, N.: Removal of reactive red dye by reusable chitosan-polyaniline/Fe3O4 nanocomposite. V J Chem. 58, 477–481 (2020)

    CAS  Google Scholar 

  2. Croce, R., Cinà, F., Lombardo, A., Crispeyn, G., Cappelli, C.I., Vian, M., Maiorana, S., Benfenati, E., Baderna, D.: Aquatic toxicity of several textile dye formulations: acute and chronic assays with Daphnia magna and Raphidocelis subcapitata. Ecotoxicol. Environ. Saf. 144, 79–87 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. Abe, F.R., Soares, A.M.V.M., de Oliveira, D.P., Gravato, C.: Toxicity of dyes to zebrafish at the biochemical level: cellular energy allocation and neurotoxicity. Environ. Pollut. 235, 255–262 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Qi, C., Xu, L., Zhang, M., Zhang, M.: Fabrication and application of hierarchical porous carbon for the adsorption of bulky dyes. Microporous Mesoporous Mater. 290, 109651 (2019)

    Article  CAS  Google Scholar 

  5. Irikura, K., Bocchi, N., Rocha-Filho, R.C., Biaggio, S.R., Iniesta, J., Montiel, V.: Electrodegradation of the Acid Green 28 dye using Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes. J. Environ. Manag. 183, 306–313 (2016)

    Article  CAS  Google Scholar 

  6. Dotto, J., Fagundes-Klen, M.R., Veit, M.T., Palacio, S.M., Bergamasco, R.: Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J. Clean. Prod. 208, 656–665 (2019)

    Article  CAS  Google Scholar 

  7. Ding, Y., Tian, Z., Li, H., Wang, X.: Efficient removal of organic dyes using a three-dimensional graphene aerogel with excellent recycling stability. New Carbon Mater. 34, 315–324 (2019)

    Article  CAS  Google Scholar 

  8. Sharma, K., Arora, A., Tripathi, S.K.: Review of supercapacitors: materials and devices. J. Energy Storage 21, 801–825 (2019)

    Article  CAS  Google Scholar 

  9. Gopalakrishnan, A., Badhulika, S.: Ultrathin graphene-like 2D porous carbon nanosheets and its excellent capacitance retention for supercapacitor. J. Ind. Eng. Chem. 68, 257–266 (2018)

    Article  CAS  Google Scholar 

  10. Hiep, N.Q., Huy, T.H., Nguyen, P.C., Sy, D.T., Khang, D.Q.: Preparation and properties of rubber nanocomposites based on NR/NBR blend reinforced with nanosilica and carbon black. V J Chem. 57, 213–217 (2019)

    CAS  Google Scholar 

  11. Hanh, N.T., Xuyen, N.T., Thuy, T.T.T.: Synthesis and characterization of Fe3O4/GO nanocomposite for drug carrier. V J Chem. 56, 642–646 (2018)

    CAS  Google Scholar 

  12. Liu, Y., Jing, Z., Zhang, T., Chen, Q., Qiu, F., Peng, Y., Tang, S.: Fabrication of functional biomass carbon aerogels derived from sisal fibers for application in selenium extraction. Food Bioprod. Process. 111, 93–103 (2018)

    Article  CAS  Google Scholar 

  13. Tan, G., Sun, W., Xu, Y., Wang, H., Xu, N.: Sorption of mercury(II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresour. Technol. 211, 727–735 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. Lee, J.-H., Park, S.-J.: Recent advances in preparations and applications of carbon aerogels: a review. Carbon N Y 163, 1–18 (2020)

    Article  CAS  Google Scholar 

  15. Zhang, T., Yuan, D., Guo, Q., Qiu, F., Yang, D., Ou, Z.: Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: inspired by green leaves to green Tofu. Food Bioprod. Process. 114, 154–162 (2019)

    Article  CAS  Google Scholar 

  16. Jiao, C., Li, T., Wang, J., Wang, H., Zhang, X., Han, X., Du, Z., Shang, Y., Chen, Y.: Efficient removal of dyes from aqueous solution by a porous sodium alginate/gelatin/graphene oxide triple-network composite aerogel. J. Polym. Environ. 28, 1492–1502 (2020)

    Article  CAS  Google Scholar 

  17. Huong, N.T., Dat, N.M., Thinh, D.B., Anh, T.N.M., Quan, T.H., Long, P.N.B., Nam, H.M., Phong, M.T., Hieu, N.H.: Optimization of the antibacterial activity of silver nanoparticles-decorated graphene oxide nanocomposites. Synth. Met. 268, 116492 (2020)

    Article  CAS  Google Scholar 

  18. Dat, N.M., Long, P.N.B., Nhi, D.C.U., Minh, N.N., Nam, H.M., Phong, M.T., Hieu, N.H.: Synthesis of silver/reduced graphene oxide for antibacterial activity and catalytic reduction of organic dyes. Synth. Met. 260, 116260 (2020). https://doi.org/10.1016/j.synthmet.2019.116260

    Article  CAS  Google Scholar 

  19. Tan, R.K.L., Reeves, S.P., Hashemi, N., Thomas, D.G., Kavak, E., Montazami, R., Hashemi, N.N.: Graphene as a flexible electrode: review of fabrication approaches. J. Mater. Chem. A Mater. 5, 17777–17803 (2017)

    Article  CAS  Google Scholar 

  20. Nguyen, V.T., Ha, L.Q., Nguyen, T.D.L., Ly, P.H., Nguyen, D.M., Hoang, D.: Nanocellulose and graphene oxide aerogels for adsorption and removal methylene blue from an aqueous environment. ACS Omega 7, 1003–1013 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aboutalebi, S.H., Chidembo, A.T., Salari, M., Konstantinov, K., Wexler, D., Liu, H.K., Dou, S.X.: Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4, 1855–1865 (2011)

    Article  CAS  Google Scholar 

  22. Roy-Mayhew, J.D., Aksay, I.A.: Graphene materials and their use in dye-sensitized solar cells. Chem. Rev. 114, 6323–6348 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. Narayanan, M., Kandasamy, G., Kandasamy, S., Natarajan, D., Devarayan, K., Alsehli, M., Elfasakhany, A., Pugazhendhi, A.: Water hyacinth biochar and Aspergillus niger biomass amalgamation potential in removal of pollutants from polluted lake water. J. Environ. Chem. Eng. 9, 105574 (2021)

    Article  CAS  Google Scholar 

  24. Van Nguyen, T.T., Tri, N., Tran, B.A., Dao, D.T., Nguyen, S.T., Nguyen, T.A., Phan, A.N., Mai, T.P., Huynh, H.K.P.: Synthesis, characteristics, oil adsorption, and thermal insulation performance of cellulosic aerogel derived from water hyacinth. ACS Omega 40, 26130–26139 (2021)

    Article  Google Scholar 

  25. Phat, L.N., Thang, T.Q., Nguyen, H.C., Duyen, D.T.M., Tien, D.X., Khoa, B.D.D., Khang, P.T., Giang, N.T.H., Nam, H.M., Phong, M.T.: Fabrication and modification of cellulose aerogels from Vietnamese water hyacinth for oil adsorption application. Korean J. Chem. Eng. 38, 1–9 (2021)

    Article  Google Scholar 

  26. Kobina Sam, D., Kobina Sam, E., Lv, X.: Application of biomass-derived nitrogen-doped carbon aerogels in electrocatalysis and supercapacitors. ChemElectroChem 7, 3695–3712 (2020)

    Article  CAS  Google Scholar 

  27. Hu, Y., Tong, X., Zhuo, H., Zhong, L., Peng, X., Wang, S., Sun, R.: 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO 2 adsorption. RSC Adv. 6, 15788–15795 (2016)

    Article  CAS  Google Scholar 

  28. Sun, J., Liu, Y., Wu, Z., Xu, M., Ma, C., Luo, S., Huang, J., Li, W., Liu, S.: Compressible, anisotropic lamellar cellulose-based carbon aerogels enhanced by carbon dots for superior energy storage and water deionization. Carbohydr. Polym. 252, 117209 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. Phat, L.N., Thang, T.Q., Nguyen, H.C., Duyen, D.T.M., Tien, D.X., Khoa, B.D.D., Khang, P.T., Giang, N.T.H., Nam, H.M., Phong, M.T., Hieu, N.H.: Fabrication and modification of cellulose aerogels from Vietnamese water hyacinth for oil adsorption application. Korean J. Chem. Eng. 38, 2247–2255 (2021)

    Article  CAS  Google Scholar 

  30. Qian, L., Zhang, H.: Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 86, 172–184 (2011)

    Article  CAS  Google Scholar 

  31. Lei, E., Wei, L., Chunhui, M., Zhou, X., Shouxin, L.: CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors. Appl. Surf. Sci. 457, 477–486 (2018)

    Article  CAS  Google Scholar 

  32. Chen, S., Chen, M., Huang, H., Liu, X., Qu, B., Wang, R., Liu, K., Zheng, Y., Zhuo, D.: Nanocrystalline cellulose–and graphene oxide–reinforced polyvinyl alcohol films: synthesis, characterization, and origin of beneficial co-filling effects. Appl. Compos. Mater. 29, 1–23 (2022)

    Article  CAS  Google Scholar 

  33. Takeno, H., Inoguchi, H., Hsieh, W.-C.: Mechanical and structural properties of cellulose nanofiber/poly (vinyl alcohol) hydrogels cross-linked by a freezing/thawing method and borax. Cellulose 27, 4373–4387 (2020)

    Article  CAS  Google Scholar 

  34. Chen, B., Jiang, L., Wu, J., Hu, A., Lu, X., Jiang, Q.: Reduction of graphene oxide by alcohol thermal treatment and its energy storage performance. ChemNanoMat 5, 1317–1323 (2019)

    Article  CAS  Google Scholar 

  35. Gong, J., Li, J., Xu, J., Xiang, Z., Mo, L.: Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv. 7, 33486–33493 (2017)

    Article  CAS  Google Scholar 

  36. Gan, S., Zakaria, S., Chia, C.H., Kaco, H.: Effect of graphene oxide on thermal stability of aerogel bio-nanocomposite from cellulose-based waste biomass. Cellulose 25, 5099–5112 (2018)

    Article  CAS  Google Scholar 

  37. Wang, Z., Xu, D., Huang, Y., Wu, Z., Wang, L., Zhang, X.: Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chem. Commun. 48, 976–978 (2012)

    Article  CAS  Google Scholar 

  38. Zeng, Y., Yarbrough, J.M., Mittal, A., Tucker, M.P., Vinzant, T.B., Decker, S.R., Himmel, M.E.: In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy. Biotechnol. Biofuels. 9, 256 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Osterrieth, J.W., et al.: How reproducible are surface areas calculated from the BET equation? Adv. Mater. 34, 2201502 (2022)

    Article  CAS  Google Scholar 

  40. Zhai, Z., Wang, S., Xu, Y., Zhang, L., Yan, M.: Carbon aerogels with modified pore structures as electrode materials for supercapacitors. J. Solid State Electrochem. 21, 3545–3555 (2017)

    Article  CAS  Google Scholar 

  41. Do, N.H.N., Truong, B.Y., Nguyen, P.T.X., Le, K.A., Duong, H.M., Le, P.K.: Composite aerogels of TEMPO-oxidized pineapple leaf pulp and chitosan for dyes removal. Sep. Purif. Technol. 283, 120200 (2022)

    Article  CAS  Google Scholar 

  42. Trinh, T.T.P.N.X., Quan, T.H., Anh, T.N.M., Thinh, D.B., Lan, N.T., Trinh, D.N., Dat, N.M., Nam, H.M., Phong, M.T., Hieu, N.H.: Preparing three-dimensional graphene aerogels by chemical reducing method: investigation of synthesis condition and optimization of adsorption capacity of organic dye. Surf. Interfaces 23, 101023 (2021)

    Article  CAS  Google Scholar 

  43. Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G., Mangwandi, C.: Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. J. Chem. Eng. 307, 264–272 (2017)

    Article  CAS  Google Scholar 

  44. Wu, Y., Zhang, L., Gao, C., Ma, J., Ma, X., Han, R.: Adsorption of copper ions and methylene blue in a single and binary system on wheat straw. J. Chem. Eng. Data 54, 3229–3234 (2009)

    Article  CAS  Google Scholar 

  45. Wang, Y., Pan, J., Li, Y., Zhang, P., Li, M., Zheng, H., Zhang, X., Li, H., Du, Q.: Methylene blue adsorption by activated carbon, nickel alginate/activated carbon aerogel, and nickel alginate/graphene oxide aerogel: a comparison study. J. Mater. Res. Technol. 9, 12443–12460 (2020)

    Article  CAS  Google Scholar 

  46. Lv, D., Li, Y., Wang, L.: Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal. Int. J. Biol. Macromol. 148, 979–987 (2020)

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, J., Yuan, W., Xia, T., Ao, C., Zhao, J., Huang, B., Wang, Q., Zhang, W., Lu, C.: A TiO2 coated carbon aerogel derived from bamboo pulp fibers for enhanced visible light photo-catalytic degradation of methylene blue. Nanomaterials 11, 239 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Y., Li, Y., Zhang, X., Zheng, H.: Removal of methylene blue from water by copper alginate/activated carbon aerogel: equilibrium, kinetic, and thermodynamic studies. J. Polym. Environ. 28, 200–210 (2020)

    Article  CAS  Google Scholar 

  49. Beh, J.H., Lim, T.H., Lew, J.H., Lai, J.C.: Cellulose nanofibril-based aerogel derived from sago pith waste and its application on methylene blue removal. Int. J. Biol. Macromol. 160, 836–845 (2020)

    Article  CAS  PubMed  Google Scholar 

  50. Sharma, Y.C.: Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. J. Chem. Eng. Data 55, 435–439 (2010)

    Article  CAS  Google Scholar 

  51. Wang, C.H., Wen, W.C., Hsu, H.C., Yao, B.Y.: High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor. Adv. Powder Technol. 27, 1387–1395 (2016)

    Article  CAS  Google Scholar 

  52. Minh, T., et al.: Effects of activation conditions on the characteristics, adsorption capacity, and energy storage of carbon aerogel from watermelon rind. ChemNanoMat 8, 12 (2022)

    Google Scholar 

  53. Ping, Y., Yang, S., Han, J., Li, X., Zhang, H., Xiong, B., Fang, P., He, C.: N-self-doped graphitic carbon aerogels derived from metal–organic frameworks as supercapacitor electrode materials with high-performance. Electrochim. Acta. 380, 138237 (2021)

    Article  CAS  Google Scholar 

  54. Li, H., Chen, L., Zhou, Q., Qiu, D., Zhang, G., Dang, Y.: NiCO2O4 used as a loading material to improve the capacitive performance of nitrogen-doped carbon aerogel. J. Mater. Sci. 57, 12497–12510 (2022)

    Article  CAS  Google Scholar 

  55. Wu, X.-L., Wen, T., Guo, H.-L., Yang, S., Wang, X., Xu, A.-W.: Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7, 3589–3597 (2013)

    Article  CAS  PubMed  Google Scholar 

  56. Zhuo, H., Hu, Y., Chen, Z., Zhong, L.: Cellulose carbon aerogel/PPy composites for high-performance supercapacitor. Carbohydr. Polym. 215, 322–329 (2019)

    Article  CAS  PubMed  Google Scholar 

  57. Yao, B., Peng, H., Zhang, H., Kang, J., Zhu, C., Delgado, G., Byrne, D., Faulkner, S., Freyman, M., Lu, X., Worsley, M.A., Lu, J.Q., Li, Y.: Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett. 21, 3731–3737 (2021)

    Article  CAS  PubMed  Google Scholar 

  58. Sun, J., Li, W., Xu, Z., Ma, C., Wu, Z., Liu, S.: Ultralight carbon aerogel with tubular structures and N-containing sandwich-like wall from kapok fibers for supercapacitor electrode materials. J. Power Sour. 438, 227030 (2019)

    Article  CAS  Google Scholar 

  59. Ma, Y., Chen, D., Fang, Z., Zheng, Y., Li, W., Xu, S., Lu, X., Shao, G., Liu, Q., Yang, W.: High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles. PNAS 21, 118 (2021)

    Google Scholar 

  60. Wang, M., Zhang, J., Yi, X., Zhao, X., Liu, B., Liu, X.: Nitrogen-doped hierarchical porous carbon derived from ZIF-8 supported on carbon aerogels with advanced performance for supercapacitor. Appl. Surf. Sci. 507, 145166 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Huu Hieu or Mai Thanh Phong.

Ethics declarations

Conflict of interest

The authors declare no interest conflicts that can influence the publication of this paper. This research was performed by listed authors who are fully aware of its content and approve its submission.

Ethical standards statements

The authors affirm that this is an original study and has not been published nor currently under consideration for publication elsewhere.

Human and animal rights

The authors ensure that studies on either human or animal subjects were conducted in this work. Kindly issue any discussion relating to this manuscript to the corresponding author at nhhieubk@hcmut.edu.vn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1106 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieu, N.H., Duyen, D.T.M., Thang, T.Q. et al. Fabrication of reduced graphene oxide-doped carbon aerogels from water hyacinth for removal of methylene blue in water and energy storage. J Nanostruct Chem (2023). https://doi.org/10.1007/s40097-023-00526-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40097-023-00526-4

Keywords

Navigation