Skip to main content

Disulfide bond-driven hyaluronic acid/sericin nanoparticles for wound-healing application

Abstract

There is a growing demand of bioinspired wound-healing platforms with superior tissue repairing and low immunogenicity. Hyaluronic acid (HA) and sericin (Sc) are extensively used for their competence in tissue engineering and gene/drug delivery. Herein, we demonstrate the formation of hybrid nanoparticles of HA and Sc (HS NPs) taking advantage of the dynamic disulfide bonding between their thiolated derivatives. The fabricated HS NPs were loaded with ursodeoxycholic acid (UDC), a known suppressor for NF-κB expression, and explored for the cellular response of designed hybrid UDC-HS NPs. The cytotoxicity of the synthesized hybrid system was evaluated on CCD-986Sk cells, showing negligible cytotoxicity with the cell proliferation data supporting the potential of UDC-HS NPs in increasing the cell density. Moreover, UDC-HS NPs also directed enhanced antioxidant activity. Furthermore, the wound-healing capability of UDC-HS NPs was investigated through in vitro scratch assay on CCD-986Sk cells. The results obtained could provide a useful approach in designing hybrid nanoplatform with implications in wound repair and tissue regeneration.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The data that support the tables within this article and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Qi, C., Xu, L., Deng, Y., Wang, G., Wang, Z., Wang, L.: Sericin hydrogels promote skin wound healing with effective regeneration of hair follicles and sebaceous glands after complete loss of epidermis and dermis. Biomater. Sci. 6, 2859–2870 (2018)

    CAS  PubMed  Article  Google Scholar 

  2. Dreifke, M.B., Jayasuriya, A.A., Jayasuriya, A.C.: Current wound healing procedures and potential care. Mater. Sci. Eng. C 48, 651–662 (2015)

    CAS  Article  Google Scholar 

  3. Lim, H.W., Collins, S.A.B., Resneck, J.S., Jr., Bolognia, J., Hodge, J.A., Rohrer, T.A., Van Beek, M.J., Margolis, D.J., Sober, A.J., Weinstock, M.A., Nerenz, D.R., Begolka, W.S., Moyano, J.V.: A risk adjustment approach to estimating the burden of skin disease in the united states. J. Am. Acad. Dermatol. 78, 129–140 (2018)

    PubMed  Article  Google Scholar 

  4. Li, Y., Liu, X., Tan, L., Cui, Z., Yang, X., Zheng, Y., Yeung, K.W.K., Chu, P.K., Wu, S.: Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Funct. Mater. 28, 1800299 (2018)

    Article  CAS  Google Scholar 

  5. Dhand, C., Venkatesh, M., Barathi, V.A., Harini, S., Bairagi, S., Goh-Tze-Leng, E., Muruganandham, N., Low, K.Z.W., Fazil, M., Loh, X.J., Srinivasan, D.K., Liu, S.P., Beuerman, R.W., Verma, N.K., Ramakrishna, S., Lakshminarayanan, R.: Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity. Biomaterials 138, 153–168 (2017)

    CAS  PubMed  Article  Google Scholar 

  6. Raaymakers, C., Verbrugghe, E., Hernot, S., Hellebuyck, T., Betti, C., Peleman, C., Claeys, M., Bert, W., Caveliers, V., Ballet, S., Martel, A., Pasmans, F., Roelants, K.: Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators. Nat. Commun. 8, 1495 (2017)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Ramanathan, G., Thyagarajan, S., Sivagnanam, U.T.: Accelerated wound healing and its promoting effects of biomimetic collagen matrices with siderophore loaded gelatin microspheres in tissue engineering. Mater. Sci. Eng. C 93, 455–464 (2018)

    CAS  Article  Google Scholar 

  8. Mantri, Y., Tsujimoto, J., Donovan, B., Fernandes, C.C., Garimella, P.S., Penny, W.F., Anderson, C.A., Jokerst, J.V.: Photoacoustic monitoring of angiogenesis predicts response to therapy in healing wounds. Wound Repair Regen. 30, 258–267 (2022)

    PubMed  Article  Google Scholar 

  9. Vågesjö, E., Öhnstedt, E., Mortier, A., Lofton, H., Huss, F., Proost, P., Roos, S., Phillipson, M.: Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proc. Natl. Acad. Sci. 115, 1895–1900 (2018)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Jin, L., Guo, X., Gao, D., Wu, C., Hu, B., Tan, G., Du, N., Cai, X., Yang, Z., Zhang, X.: Nir-responsive mxene nanobelts for wound healing. NPG Asia Mater. 13, 24 (2021)

    CAS  Article  Google Scholar 

  11. Lu, X., Qin, L., Guo, M., Geng, J., Dong, S., Wang, K., Xu, H., Qu, C., Mia, J., Liu, M.: A novel alginate from Sargassum seaweed promotes diabetic wound healing by regulating oxidative stress and angiogenesis. Carbohyd. Polym. 289, 119437 (2022)

    CAS  Article  Google Scholar 

  12. Goh, E.T., Kirby, G., Jayakumar, R., Liang, X.J., Tan, A.: Accelerated wound healing using nanoparticles, pp. 287–306. Academic Press, Boston (2016).. (M.R. Hamblin, P. Avci, T. W. Prow (eds))

    Google Scholar 

  13. Makabenta, J.M.V., Nabawy, A., Li, C.-H., Schmidt-Malan, S., Patel, R., Rotello, V.M.: Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36 (2021)

    CAS  PubMed  Article  Google Scholar 

  14. Skóra, B., Krajewska, U., Nowak, A., Dziedzic, A., Barylyak, A., Kus-Liśkiewicz, M.: Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Sci. Rep. 11, 13451 (2021)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. Liang, Y., He, J., Guo, B.: Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021)

    CAS  Article  Google Scholar 

  16. Guo, B., Dong, R., Liang, Y., Li, M.: Haemostatic materials for wound healing applications. Nat. Rev. Chem. 5, 773–791 (2021)

    CAS  Article  Google Scholar 

  17. Liang, Y., Zhao, X., Hu, T., Chen, B., Yin, Z., Ma, X.P., Guo, B.: Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15, 1900046 (2019)

    Article  CAS  Google Scholar 

  18. Hasanin, M., Taha, N.F., Abdou, A.R., Emara, L.H.: Green decoration of graphene oxide Nano sheets with gelatin and gum Arabic for targeted delivery of doxorubicin. Biotechnol. Rep. 34, e00722 (2022)

    CAS  Article  Google Scholar 

  19. Dacrory, S., Hashem, A.H., Hasanin, M.: Synthesis of cellulose based amino acid functionalized nano-biocomplex: characterization, antifungal activity, molecular docking and hemocompatibility. Environ. Nanotechnol. Monit. Manag. 15, 100453 (2021)

    Google Scholar 

  20. Huanga, L., Yua, L., Yin, X., Lin, Y., Xu, Y., Niu, Y.: Silver nanoparticles with vanadium oxide nanowires loaded into electrospun dressings for efficient healing of bacterium-infected wounds. J. Colloid Interface Sci. 622, 117–125 (2022)

    Article  CAS  Google Scholar 

  21. Hasanin, M., Swielam, E.M., Atwa, N.A., Agwa, M.M.: Novel design of bandages using cotton pads, doped with chitosan, glycogen and ZnO nanoparticles, having enhanced antimicrobial and wounds healing effects. Int. J. Biol. Macromol. 197, 121–130 (2022)

    CAS  PubMed  Article  Google Scholar 

  22. Matter, M.T., Probst, S., Läuchli, S., Herrmann, I.K.: Uniting drug and delivery: metal oxide hybrid nanotherapeutics for skin wound care. Pharmaceutics 12, 780 (2020)

    CAS  PubMed Central  Article  Google Scholar 

  23. Ferreira, A.M., Mattu, C., Ranzato, E., Ciardelli, G.: Bioinspired porous membranes containing polymer nanoparticles for wound healing. J. Biomed. Mater. Res. A. 102, 4394–4405 (2014)

    PubMed  Google Scholar 

  24. Zhang, Y., Li, D., Xu, Y., Niu, Y.: Application of a cascaded nanozyme in infected wound recovery of diabetic mice. ACS Biomater. Sci. Eng. 8, 1522–1531 (2022)

    CAS  PubMed  Article  Google Scholar 

  25. Alavi, M., Rai, M.: Topical delivery of growth factors and metal/metal oxide nanoparticles to infected wounds by polymeric nanoparticles: an overview. Expert. Rev. Anti. Infect. Ther. 18, 1021–1032 (2020)

    CAS  PubMed  Article  Google Scholar 

  26. Neuman, M.G., Nanau, R.M., Oruña-Sanchez, L., Coto, G.: Hyaluronic acid and wound healing. J. Pharm. Pharm. Sci. 18, 53–60 (2015)

    CAS  PubMed  Article  Google Scholar 

  27. Graça, M.F.P., Miguel, S.P., Cabral, C.S.D., Correia, I.J.: Hyaluronic acid-based wound dressings: a review. Carbohyd. Polym. 241, 116364 (2020)

    Article  CAS  Google Scholar 

  28. Baptista-Silva, S., Borges, S., Costa-Pinto, A.R., Costa, R., Amorim, M., Dias, J.R., Ramos, Ó., Alves, P., Granja, P.L., Soares, R., Pintado, M., Oliveira, A.L.: In situ forming silk sericin-based hydrogel: a novel wound healing biomaterial. ACS Biomater. Sci. Eng. 7, 1573–1586 (2021)

    CAS  PubMed  Article  Google Scholar 

  29. Lamboni, L., Li, Y., Liu, J., Yang, G.: Silk sericin-functionalized bacterial cellulose as a potential wound-healing biomaterial. Biomacromol 17, 3076–3084 (2016)

    CAS  Article  Google Scholar 

  30. Yu, Q., Meng, Z., Liu, Y., Li, Z., Sun, X., Zhao, Z.: Photocuring hyaluronic acid/silk fibroin hydrogel containing curcumin loaded chitosan nanoparticles for the treatment of MG-63 cells and ME3T3-E1 cells. Polymers 13, 2302 (2021)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Zhang, M., Wang, D., Ji, N., Lee, S., Wang, G., Zheng, Y., Zhang, X., Yang, L., Qin, Z., Yang, Y.: Bioinspired design of sericin/chitosan/Ag@MOF/GO hydrogels for efficiently combating resistant bacteria, rapid hemostasis, and wound healing. Polymers 13, 2812 (2021)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Bodnár, E., Bakondi, E., Kovács, K., Hegedűs, C., Lakatos, P., Robaszkiewicz, A., Regdon, Z., Virág, L., Szabó, É.: Redox profiling reveals clear differences between molecular patterns of wound fluids from acute and chronic wounds. Oxid. Med. Cell. Longev. 2018, 5286785 (2018)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. El-Kafrawy, D.S., Belal, T.S., Mahrous, M.S., Abdel-Khalek, M.M., Abo-Gharam, A.H.: Validated spectrophotometric and rp-hplc–dad methods for the determination of ursodeoxycholic acid based on derivatization with 2-nitrophenylhydrazine. J. AOAC Int. 100, 677–685 (2019)

    Article  CAS  Google Scholar 

  34. Jiang, T., Xie, Z., Wu, F., Chen, J., Liao, Y., Liu, L., Zhao, A., Wu, J., Yang, P., Huang, N.: Hyaluronic acid nanoparticle composite films confer favorable time-dependent biofunctions for vascular wound healing. ACS Biomater. Sci. Eng. 5, 1833–1848 (2019)

    CAS  PubMed  Article  Google Scholar 

  35. Choi, K.Y., Chung, H., Min, K.H., Yoon, H.Y., Kim, K., Park, J.H., Kwon, I.C., Jeong, S.Y.: Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31, 106–114 (2010)

    CAS  PubMed  Article  Google Scholar 

  36. Verma, J., Kanoujia, J., Parashar, P., Tripathi, C.B., Saraf, S.A.: Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv. Transl. Res. 7, 77–88 (2017)

    CAS  PubMed  Article  Google Scholar 

  37. Wang, Z., Zhang, Y., Zhang, J., Huang, L., Liu, J., Li, Y., Zhang, G., Kundu, S.C., Wang, L.: Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Sci. Rep. 4, 7064 (2014)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Kurihara, T., Noda, Y., Takegoshi, K.: Capping structure of ligand-cysteine on CdSe magic-sized clusters. ACS Omega 4, 3476–3483 (2019)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Huamani-Palomino, R.G., Jacinto, C.R., Alarcón, H., Mejía, I.M., López, R.C., Silva, D.D.O., Cavalheiro, E.T.G., Venâncio, T., Dávalos, J.Z., Valderrama, A.C.: Chemical modification of alginate with cysteine and its application for the removal of Pb(II) from aqueous solutions. Int. J. Biol. Macromol. 129, 1056–1068 (2019)

    CAS  PubMed  Article  Google Scholar 

  40. Ahn, J.S., Choi, H.-K., Lee, K.H., Nahm, J.H., Cho, C.-S.: Novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of silk sericin. J. Appl. Polym. Sci. 80, 274–280 (2001)

    CAS  Article  Google Scholar 

  41. Manesa, K.C., Kebede, T.G., Dube, S., Nindi, M.M.: Profiling of silk sericin from cocoons of three southern African wild silk moths with a focus on their antimicrobial and antioxidant properties. Materials (Basel). 13, 5706 (2020)

    CAS  PubMed Central  Article  Google Scholar 

  42. Carneiro, J., Döll-Boscardin, P.M., Fiorin, B.C., Nadal, J.M., Farago, P.V., Paula, J.P.D.: Development and characterization of hyaluronic acid-lysine nanoparticles with potential as innovative dermal filling. Braz. J. Pharm. Sci. 52, 645–651 (2016)

    CAS  Article  Google Scholar 

  43. Weiss, I.M., Muth, C., Drumm, R., Kirchner, H.O.K.: Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 11, 1–5 (2018)

    Article  CAS  Google Scholar 

  44. Fallacara, A., Marchetti, F., Pozzoli, M., Citernesi, U.R., Manfredini, S., Vertuani, A.S.: Formulation and characterization of native and crosslinked hyaluronic acid microspheres for dermal delivery of sodium ascorbyl phosphate: a comparative study. Pharmaceutics. 10, 254 (2018)

    CAS  PubMed Central  Article  Google Scholar 

  45. Lewandowska, K., Sionkowska, A., Grabska, S., Kaczmarek, B.: Surface and thermal properties of collagen/hyaluronic acid blends containing chitosan. Int. J. Biol. Macromol. 92, 371–376 (2016)

    CAS  PubMed  Article  Google Scholar 

  46. Boonpavanitchakul, K., Jarussophon, S., Pimpha, N., Kangwansupamonkon, W., Magaraphan, R.: Silk sericin as a bio-initiator for grafting from synthesis of polylactide via ring-opening polymerization. Eur. Polym. J. 121, 109265 (2019)

    Article  CAS  Google Scholar 

  47. Miura, T., Ouchida, R., Yoshikawa, N., Okamoto, K., Makino, Y., Nakamura, T., Morimoto, C., Makino, I., Tanaka, H.: Functional modulation of the glucocorticoid receptor and suppression of nf-kappaB-dependent transcription by ursodeoxycholic acid. J. Biol. Chem. 276, 47371–47378 (2001)

    CAS  PubMed  Article  Google Scholar 

  48. El-Hamoly, T., Abd-El-Rahman, S.S., Al-Abyad, M.: Potential effects of ursodeoxycholic acid on accelerating cutaneous wound healing. PLoS ONE 14, e0226748 (2019)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Balsamo, R., Lanata, L., Egan, C.G.: Mucoactive drugs. Eur. Respir. Rev. 19, 127–133 (2010)

    CAS  PubMed  Article  Google Scholar 

  50. Aldini, G., Altomare, A., Baron, G., Vistoli, G., Carini, M., Borsani, L., Sergio, F.: N-acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radical Res. 52, 751–762 (2018)

    CAS  Article  Google Scholar 

  51. Litwiniuk, M., Krejner, A., Speyrer, M.S., Gauto, A.R., Grzela, T.: Hyaluronic acid in inflammation and tissue regeneration. Wounds 28, 78–88 (2016)

    PubMed  Google Scholar 

  52. Rios de la Rosa, J.M., Pingrajai, P., Pelliccia, M., Spadea, A., Lallana, E., Gennari, A., Stratford, I.J., Rocchia, W., Tirella, A., Tirelli, N.: Binding and internalization in receptor-targeted carriers: the complex role of cd44 in the uptake of hyaluronic acid-based nanoparticles (sirna delivery). Adv. Healthc. Mater. 8, 1901182 (2019)

    CAS  Article  Google Scholar 

  53. Jiang, H., Peterson, R.S., Wang, W., Bartnik, E., Knudson, C.B., Knudson, W.: A requirement for the cd44 cytoplasmic domain for hyaluronan binding, pericellular matrix assembly, and receptor-mediated endocytosis in COS-7 cells. J. Biol. Chem. 277, 10531–10538 (2002)

    CAS  PubMed  Article  Google Scholar 

  54. Ersel, M., Uyanikgil, Y., Karbek-Akarca, F., Ozcete, E., Altunci, Y.A., Karabey, F., Cavusoglu, T., Meral, A., Yigitturk, G., Oyku-Cetin, E.: Effects of silk sericin on incision wound healing in a dorsal skin flap wound healing rat model. Med. Sci. Monit. 22, 1064–1078 (2016)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Aramwit, P., Sangcakul, A.: The effects of sericin cream on wound healing in rats. Biosci. Biotechnol. Biochem. 71, 2473–2477 (2007)

    CAS  PubMed  Article  Google Scholar 

  56. Chlapanidas, T., Faragò, S., Lucconi, G., Perteghella, S., Galuzzi, M., Mantelli, M., Avanzini, M.A., Tosca, M.C., Marazzi, M., Vigo, D., Torre, M.L., Faustini, M.: Sericins exhibit ros-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int. J. Biol. Macromol. 58, 47–56 (2013)

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) (Grant Nos. 2021R1I1A3059994, 221C000142, 2020R1A6A1AA03044512, 2020K1A3A1A19088873, and 2020R1A2C1012586) and Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through High Value-added Food Technology Development Program funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321027-5). The authors are also thankful to Core Research Support Center for Natural Products and Medical Materials (CRCNM) in Yeungnam University, South Korea for instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anuj Kumar or Sung Soo Han.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 290 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sood, A., Bhaskar, R., Won, S.Y. et al. Disulfide bond-driven hyaluronic acid/sericin nanoparticles for wound-healing application. J Nanostruct Chem (2022). https://doi.org/10.1007/s40097-022-00505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40097-022-00505-1

Keywords

  • Wound healing
  • Hyaluronic acid
  • Sericin
  • Nanoparticles
  • Ursodeoxycholic acid
  • Tissue engineering