Skip to main content
Log in

Nanoscale metal–organic frameworks as smart nanocarriers for cancer therapy

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

This article has been updated

Abstract

Cancer is one of the serious diseases to human life. Early and precise cancer diagnosis and timely therapy are in urgent need nowadays. Due to the advantages of porous structures and tunable properties, metal–organic frameworks (MOFs) are becoming type of rapidly developing and attractive supports used in biomedicine, which have been widely applied in the fields of chemistry, biology, materials science, etc. Particularly, nanoscale MOFs (nMOFs) with more accessible active sites and improved stability are ideal platforms for biological and clinical applications in vitro and in vivo. This review article summarizes the recent progresses in nMOFs based nanoplatforms for drug delivery and cancer therapy. Different techniques using nMOFs are systematically summarized including chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamic therapy (CDT), radiotherapy (RT), and the combined therapy methods. Finally, a brief conclusion and outlook for biomedical applications of this special field is provided. We expect this review could be helpful for future designing and fabrication of multi-functional nMOFs platforms for drug delivery, disease therapy, and other biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 16 June 2022

    The original version of this article was revised to update the email id of the authors.

References

  1. Coussens, L.M., Werb, Z.: Inflammation and cancer. Nature 420, 860–867 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, C., Zhao, Y., Xu, X., Xu, R., Li, H., Teng, X., Du, Y., Miao, Y., Lin, H.C., Han, D.: Cancer diagnosis with DNA molecular computation. Nat. Nanotechnol. 15, 709–715 (2020)

    Article  PubMed  Google Scholar 

  3. Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  CAS  Google Scholar 

  4. Jin, R.H., Liu, Z.N., Liu, T., Yuan, P.Y., Bai, Y.K., Chen, X.: Redox-responsive micelles integrating catalytic nanomedicine and selective chemotherapy for effective tumor treatment. Chin. Chem. Lett. 32, 3076–3082 (2021)

    Article  CAS  Google Scholar 

  5. Yang, J., Dai, D.H., Ma, L.J., Yang, Y.W.: Molecular-scale drug delivery systems loaded with oxaliplatin for supramolecular chemotherapy. Chin. Chem. Lett. 32, 729–734 (2021)

    Article  CAS  Google Scholar 

  6. Anbia, M., Faryadras, M.: In situ Na center dot Cu-3(BTC)(2) and Li center dot Cu-3(BTC)(2) nanoporous MOFs synthesis for enhancing H-2 storage at ambient temperature. J. Nanostruct. Chem. 5, 357–364 (2015)

    Article  CAS  Google Scholar 

  7. Yang, L.M., Gao, P., Huang, Y.L., Lu, X., Chang, Q., Pan, W., Li, N., Tang, B.: Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer. Chin. Chem. Lett. 30, 1293–1296 (2019)

    Article  CAS  Google Scholar 

  8. Ghiamaty, Z., Ghaffarinejad, A., Faryadras, M., Abdolmaleki, A., Kazemi, H.: Synthesis of palladium-carbon nanotube-metal organic framework composite and its application as electrocatalyst for hydrogen production. J. Nanostruct. Chem. 6, 299–308 (2016)

    Article  CAS  Google Scholar 

  9. Wu, R., Wang, H.Z., Hai, L., Wang, T.Z., Hou, M., He, D.G., He, X.X., Wang, K.M.: A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chin. Chem. Lett. 31, 189–192 (2020)

    Article  CAS  Google Scholar 

  10. Rodriguez, S., Torres, F.G., Arroyo, J., Gonzales, K.N., Troncoso, O.P., López, D.: Synthesis of highly stable κ/ι-hybrid carrageenan micro- and nanogels via a sonication-assisted microemulsion route. Polym. Renew. Resour. 11, 69–82 (2020)

    Google Scholar 

  11. Makvandi, P., Chen, M., Sartorius, R., Zarrabi, A., Ashrafizadeh, M., Dabbagh Moghaddam, F., Ma, J., Mattoli, V., Tay, F.R.: Endocytosis of abiotic nanomaterials and nanobiovectors: inhibition of membrane trafficking. Nano Today 40, 101279 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gulla, S., Lomada, D., Araveti, P.B., Srivastava, A., Murikinati, M.K., Reddy, K.R., Inamuddin, Reddy, M.C., Altalhi, T.: Titanium dioxide nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells. J. Nanostruct. Chem. 11, 721–734 (2021)

    Article  CAS  Google Scholar 

  13. Tabasi, H., Babaei, M., Abnous, K., Taghdisi, S.M., Saljooghi, A.S., Ramezani, M., Alibolandi, M.: Metal–polymer-coordinated complexes as potential nanovehicles for drug delivery. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-021-00432-7

    Article  Google Scholar 

  14. Eivazzadeh-Keihan, R., Maleki, A.: Design and synthesis of a new magnetic aromatic organo-silane star polymer with unique nanoplate morphology and hyperthermia application. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-021-00401-0

    Article  Google Scholar 

  15. Nasri, S., Ebrahimi-Hosseinzadeh, B., Rahaie, M., Hatamian-Zarmi, A., Sahraeian, R.: Thymoquinone-loaded ethosome with breast cancer potential: optimization, in vitro and biological assessment. J. Nanostruct. Chem. 10, 19–31 (2020)

    Article  CAS  Google Scholar 

  16. Kong, X.J., Ji, X.T., He, T., Xie, L.H., Zhang, Y.Z., Lv, H.Y., Ding, C.F., Li, J.R.: A green-emission metal-organic framework-based nanoprobe for imaging dual tumor biomarkers in living cells. ACS Appl. Mater. Inter. 12, 35375–35384 (2020)

    Article  CAS  Google Scholar 

  17. Ma, M.Y., Lu, L.Y., Li, H.W., Xiong, Y.Z., Dong, F.P.: Functional metal organic framework/SiO2 nanocomposites: from versatile synthesis to advanced applications. Polymers 11, 1823 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, P., Liu, X.J., Cheng, Y., Zhong, S.H., Shi, X.Y., Wang, S.F., Liu, M., Ding, J.S., Zhou, W.H.: Core-shell nanosystems for self-activated drug-gene combinations against triple-negative breast cancer. ACS Appl. Mater. Inter. 12, 53654–53664 (2020)

    Article  CAS  Google Scholar 

  19. Shu, Y., Lu, Q., Yuan, F., Tao, Q., Jin, D.Q., Yao, H., Xu, Q., Hu, X.Y.: Stretchable electrochemical biosensing platform based on Ni-MOF composite/Au nanoparticle-coated carbon nanotubes for real-time monitoring of dopamine released from living cells. ACS Appl. Mater. Inter. 12, 49480–49488 (2020)

    Article  CAS  Google Scholar 

  20. Hu, X., Saravanakumar, K., Sathiyaseelan, A., Rajamanickam, V., Wang, M.H.: Cytotoxicity of aptamer-conjugated chitosan encapsulated mycogenic gold nanoparticles in human lung cancer cells. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-021-00437-2

    Article  Google Scholar 

  21. Rehman, Y., Copet, C., Morlando, A., Huang, X.F., Konstantinov, K.: Investigation of ROS scavenging properties and in vitro cytotoxicity of oxygen-deficient La2O3x nanostructure synthesized by spray pyrolysis method. J. Nanostruct. Chem. 10, 347–361 (2020)

    Article  CAS  Google Scholar 

  22. Yang, P., Gai, S., Lin, J.: Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 41, 3679–3698 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Tabasi, H., Babaei, M., Abnous, K., Taghdisi, S.M., Saljooghi, A.S., Ramezani, M., Alibolandi, M.: Metal-polymer-coordinated complexes as potential nanovehicles for drug delivery. J. Nanostruct. Chem. 11, 501–526 (2021)

    Article  CAS  Google Scholar 

  24. Xu, Q.Y., Tan, Z., Liao, X.W., Wang, C.: Recent advances in nanoscale metal-organic frameworks biosensors for detection of biomarkers. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.06.015

    Article  Google Scholar 

  25. Duman, F.D., Forgan, R.S.: Applications of nanoscale metal-organic frameworks as imaging agents in biology and medicine. J. Mater. Chem. B 9, 3423–3449 (2021)

    Article  Google Scholar 

  26. Zhang, S., Pei, X., Gao, H., Chen, S., Wang, J.: Metal-organic framework-based nanomaterials for biomedical applications. Chin. Chem. Lett. 31, 1060–1070 (2020)

    Article  CAS  Google Scholar 

  27. Rojas, S., Devic, T., Horcajada, P.: Metal organic frameworks based on bioactive components. J. Mater. Chem. B 5, 2560–2573 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Castillo-Blas, C., Montoro, C., Platero-Prats, A.E., Ares, P., Amo-Ochoa, P., Conesa, J., Zamora, F.: The role of defects in the properties of functional coordination polymers. Adv. Inorg. Chem. 76, 73–119 (2020)

    Article  Google Scholar 

  29. Peng, L., Zhang, J.L., Li, J.S., Han, B.X., Xue, Z.M., Yang, G.Y.: Surfactant-directed assembly of mesoporous metal-organic framework nanoplates in ionic liquids. Chem. Commun. 48, 8688–8690 (2012)

    Article  CAS  Google Scholar 

  30. Zheng, W.Z., Hao, X.L., Zhao, L., Sun, W.Z.: Controllable preparation of nanoscale metal-organic frameworks by ionic liquid microemulsions. Ind. Eng. Chem. Res. 56, 5899–5905 (2017)

    Article  CAS  Google Scholar 

  31. Zhang, L.Y., Gao, Y., Sun, S.J., Li, Z.H., Wu, A.G., Zeng, L.Y.: pH-Responsive metal-organic framework encapsulated gold nanoclusters with modulated release to enhance photodynamic therapy/chemotherapy in breast cancer. J. Mater. Chem. B 8, 1739–1747 (2020)

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L., Ma, X.N., Liang, H.B., Lin, H.H., Zhao, G.Y.: A non-enzymatic glucose sensor with enhanced anti-interference ability based on a MIL-53(NiFe) metal-organic framework. J. Mater. Chem. B 7, 7006–7013 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. Huang, X., Sun, X., Wang, W.L., Shen, Q., Tang, X.N., Shao, J.J.: Nanoscale metal-organic frameworks for tumor phototherapy. J. Mater. Chem. B 9, 3756–3777 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. Lei, B.Q., Wang, M.F., Jiang, Z.L., Qi, W., Su, R.X., He, Z.M.: Constructing redox-responsive metal–organic framework nanocarriers for anticancer drug delivery. ACS Appl. Mater. Interfaces 10, 16698–16706 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. He, Z.M., Huang, X., Wang, C., Li, X., Liu, Y., Zhou, Z., Wang, S., Zhang, F., Wang, Z., Jacobson, O., Zhu, J.J., Yu, G., Dai, Y., Chen, X.Y.: A catalase-like metal-organic framework nanohybrid for O2-evolving synergistic chemoradiotherapy. Angew. Chem. Int. Ed. 58, 8752–8756 (2019)

    Article  CAS  Google Scholar 

  36. Su, Z.P., Ye, F.Y., He, K.Y., Yang, T., Li, W., Ren, J.L.: Determination of acetamiprid by fluorescence monitoring of a glycine-l-histidine copper-organic framework aptasensor. Anal. Lett. (2021). https://doi.org/10.1080/00032719.2021.1946555

    Article  Google Scholar 

  37. Cai, H., Huang, Y.L., Li, D.: Biological metal-organic frameworks: Structures, host-guest chemistry and bio-applications. Coord. Chem. Rev. 378, 207–221 (2019)

    Article  CAS  Google Scholar 

  38. Zhu, H.L., Liu, D.X.: The synthetic strategies of metal-organic framework membranes, films and 2D MOFs and their applications in devices. J. Mater. Chem. A 7, 21004–21035 (2019)

    Article  CAS  Google Scholar 

  39. He, L.C., Liu, Y., Lau, J., Fan, W.P., Li, Q.Y., Zhang, C., Huang, P.T., Chen, X.Y.: Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy. Nanomedicine 14, 1343–1365 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou, J., Tian, G., Zeng, L., Song, X., Bian, X.: Nanoscaled metal-organic frameworks for biosensing, imaging, and cancer therapy. Adv. Healthc. Mater. 7, 1800022 (2018)

    Article  Google Scholar 

  41. Zhang, W., Mao, J.H., Zhu, W., Jain, A.K., Liu, K., Brown, J.B., Karpen, G.H.: Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy. Nat. Commun. 7, 12619 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ren, H., Zhang, L., An, J., Wang, T., Li, L., Si, X., He, L., Wu, X., Wang, C., Su, Z.: Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem. Commun. 50, 1000–1002 (2014)

    Article  CAS  Google Scholar 

  43. Zhu, C.H., Peng, S.Q., Cui, L.L., Cao, W.Y., Zhang, L.S., Zhao, Z.M., Jia, L., Zhang, T.F., Guo, J.B., Pang, C.F.: Synergistic effects of rapamycin and fluorouracil to treat a gastric tumor in a PTEN conditional deletion mouse model. Gastric Cancer (2021). https://doi.org/10.1007/s10120-021-01229-x

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kiss, R.C., Xia, F., Acklin, S.: Targeting DNA damage response and repair to enhance therapeutic index in cisplatin-based cancer treatment. Int. J. Mol. Sci. 22, 8199 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng, D., Zhao, J.Y., Li, Y.C., Zhu, L.Y., Jin, M.C., Wang, L.Y., Liu, J., Lei, J.D., Li, Z.L.: Self-assembled pH-sensitive nanoparticles based on ganoderma lucidum polysaccharide-methotrexate conjugates for the co-delivery of anti-tumor drugs. ACS Biomater. Sci. Eng. 7, 3764–3773 (2021)

    Article  CAS  PubMed  Google Scholar 

  46. Allen, T.M., Cullis, P.R.: Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004)

    Article  CAS  PubMed  Google Scholar 

  47. Sosnik, A., Menaker Raskin, M.: Polymeric micelles in mucosal drug delivery: challenges towards clinical translation. Biotechnol. Adv. 33, 1380–1392 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. Du, X.J., Wang, J.L., Liu, W.W., Yang, J.X., Sun, C.Y., Sun, R., Li, H.J., Shen, S., Luo, Y.L., Ye, X.D., Zhu, Y.H., Yang, X.Z., Wang, J.: Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials 69, 1–11 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. Gong, P., Sun, L., Wang, F., Liu, X., Yan, Z., Wang, M., Zhang, L., Tian, Z., Liu, Z., You, J.: Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chem. Eng. J. 356, 994–1002 (2019)

    Article  CAS  Google Scholar 

  50. Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., Che, E., Hu, L., Zhang, Q., Jiang, T., Wang, S.: Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11, 313–327 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. Horcajada, P., Serre, C., Maurin, G., Ramsahye, N.A., Balas, F., Vallet-Regí, M., Sebban, M., Taulelle, F., Férey, G.: Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J.F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J.S., Hwang, Y.K., Marsaud, V., Bories, P.N., Cynober, L., Gil, S., Férey, G., Couvreur, P., Gref, R.: Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010)

    Article  CAS  PubMed  Google Scholar 

  53. Cai, G., Jiang, H.: A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew. Chem. Int. Ed. 56, 563–567 (2017)

    Article  CAS  Google Scholar 

  54. Wang, Y., Yan, J., Wen, N., Xiong, H., Cai, S., He, Q., Hu, Y., Peng, D., Liu, Z., Liu, Y.: Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 230, 119619 (2020)

    Article  CAS  PubMed  Google Scholar 

  55. Orellana-Tavra, C., Baxter, E.F., Tian, T., Bennett, T.D., Slater, N.K.H., Cheetham, A.K., Fairen-Jimenez, D.: Amorphous metal-organic frameworks for drug delivery. Chem. Commun. 51, 13878–13881 (2015)

    Article  CAS  Google Scholar 

  56. Teplensky, M.H., Fantham, M., Peng, L., Wang, T.C., Mehta, J.P., Young, L.J., Moghadam, P.Z., Hupp, J.T., Farha, O.K., Kaminski, C.F., Fairen-Jimenez, D.: Temperature treatment of highly porous zirconium-containing metal–organic frameworks extends drug delivery release. J. Am. Chem. Soc. 139, 7522–7532 (2017)

    Article  CAS  PubMed  Google Scholar 

  57. Wang, X., Chen, X.Z., Alcântara, C.C.J., Sevim, S., Hoop, M., Terzopoulou, A., de Marco, C., Hu, C., de Mello, A.J., Falcaro, P., Furukawa, S., Nelson, B.J., Puigmartí-Luis, J., Pané, S.: MOFBOTS: metal–organic-framework-based biomedical microrobots. Adv. Mater. 31, 1901592 (2019)

    Article  Google Scholar 

  58. Liang, Z., Yang, Z., Yuan, H., Wang, C., Qi, J., Liu, K., Cao, R., Zheng, H.: A protein@metal-organic framework nanocomposite for pH-triggered anticancer drug delivery. Dalton Trans. 47, 10223–10228 (2018)

    Article  CAS  PubMed  Google Scholar 

  59. Jia, Q., Li, Z., Guo, C., Huang, X., Song, Y., Zhou, N., Wang, M., Zhang, Z., He, L., Du, M.: A γ-cyclodextrin-based metal-organic framework embedded with graphene quantum dots and modified with PEGMA via SI-ATRP for anticancer drug delivery and therapy. Nanoscale 11, 20956–20967 (2019)

    Article  CAS  PubMed  Google Scholar 

  60. Kahn, J.S., Freage, L., Enkin, N., Garcia, M.A.A., Willner, I.: Stimuli-responsive DNA-functionalized metal-organic frameworks (MOFs). Adv. Mater. 29, 1602782 (2017)

    Article  Google Scholar 

  61. Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013)

    Article  CAS  PubMed  Google Scholar 

  62. Liu, Y., Gong, C.S., Dai, Y., Yang, Z., Yu, G., Liu, Y., Zhang, M., Lin, L., Tang, W., Zhou, Z., Zhu, G., Chen, J., Jacobson, O., Kiesewetter, D.O., Wang, Z., Chen, X.: In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials 218, 119365 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Min, H., Wang, J., Qi, Y., Zhang, Y., Han, X., Xu, Y., Xu, J., Li, Y., Chen, L., Cheng, K., Liu, G., Yang, N., Li, Y., Nie, G.: Biomimetic metal–organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater. 31, 1808200 (2019)

    Article  Google Scholar 

  64. Ranji-Burachaloo, H., Reyhani, A., Gurr, P.A., Dunstan, D.E., Qiao, G.G.: Combined fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale 11, 5705–5716 (2019)

    Article  CAS  PubMed  Google Scholar 

  65. Kim, K., Lee, S., Jin, E., Palanikumar, L., Lee, J.H., Kim, J.C., Nam, J.S., Jana, B., Kwon, T.H., Kwak, S.K., Choe, W., Ryu, J.H.: MOF × biopolymer: collaborative combination of metal-organic framework and biopolymer for advanced anticancer therapy. ACS Appl. Mater. Interfaces 11, 27512–27520 (2019)

    Article  CAS  PubMed  Google Scholar 

  66. Yang, X., Tang, Q., Jiang, Y., Zhang, M., Wang, M., Mao, L.: Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J. Am. Chem. Soc. 141, 3782–3786 (2019)

    Article  CAS  PubMed  Google Scholar 

  67. Chen, W.H., Yu, X., Liao, W.C., Sohn, Y.S., Cecconello, A., Kozell, A., Nechushtai, R., Willner, I.: ATP-responsive aptamer-based metal-organic framework nanoparticles (NMOFs) for the controlled release of loads and drugs. Adv. Funct. Mater. 27, 1702102 (2017)

    Article  Google Scholar 

  68. Ma, Y., Li, X., Li, A., Yang, P., Zhang, C., Tang, B.: H2S-activable MOF nanoparticle photosensitizer for effective photodynamic therapy against cancer with controllable singlet-oxygen release. Angew. Chem. Int. Ed. 56, 13752–13756 (2017)

    Article  CAS  Google Scholar 

  69. Cheung, T.W., Li, L.: Development of self-care textile wearables with thermally stimulated drug delivery function via biological and physical investigations. Text. Res. J. 91, 820–827 (2021)

    Article  Google Scholar 

  70. Fernandez, M., Orozco, J.: Advances in functionalized photosensitive polymeric nanocarriers. Polymers 13, 2464 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, L.J., Gao, S.Y., Zhao, T.L., Tian, K., Zheng, T.Y., Zhang, X.Y., Xiao, L.Y., Ding, Z.Z., Lu, Q., Kaplan, D.L.: Pressure-driven spreadable deferoxamine-laden hydrogels for vascularized skin flaps dagger. Biomater. Sci. 9, 3162–3170 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang, K., Zhang, L., Hu, Q., Zhang, Q., Lin, W., Cui, Y., Yang, Y., Qian, G.: Thermal stimuli-triggered drug release from a biocompatible porous metal–organic framework. Chem. Eur. J. 23, 10215–10221 (2017)

    Article  CAS  PubMed  Google Scholar 

  73. Roth Stefaniak, K., Epley, C.C., Novak, J.J., McAndrew, M.L., Cornell, H.D., Zhu, J., McDaniel, D.K., Davis, J.L., Allen, I.C., Morris, A.J., Grove, T.Z.: Photo-triggered release of 5-fluorouracil from a MOF drug delivery vehicle. Chem. Commun. 54, 7617–7620 (2018)

    Article  CAS  Google Scholar 

  74. Lin, C., He, H., Zhang, Y., Xu, M., Tian, F., Li, L., Wang, Y.: Acetaldehyde-modified-cystine functionalized Zr-MOFs for pH/GSH dual-responsive drug delivery and selective visualization of GSH in living cells. RSC Adv. 10, 3084–3091 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, Y., Jin, J., Wang, D., Lv, J., Hou, K., Liu, Y., Chen, C., Tang, Z.: Coordination-responsive drug release inside gold nanorod@metal-organic framework core–shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res. 11, 3294–3305 (2018)

    Article  CAS  Google Scholar 

  76. Ng, K.K., Zheng, G.: Molecular interactions in organic nanoparticles for phototheranostic applications. Chem. Rev. 115, 11012–11042 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. Yoon, I., Li, J., Shim, Y.K.: Advance in photosensitizers and light delivery for photodynamic therapy. Clin. Endosc. 46, 7–23 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lovell, J.F., Liu, T.W.B., Chen, J., Zheng, G.: Activatable photosensitizers for imaging and therapy. Chem. Rev. 110, 2839–2857 (2010)

    Article  CAS  PubMed  Google Scholar 

  79. Agostinis, P., Berg, K., Cengel, K.A., Foster, T.H., Girotti, A.W., Gollnick, S.O., Hahn, S.M., Hamblin, M.R., Juzeniene, A., Kessel, D., Korbelik, M., Moan, J., Mroz, P., Nowis, D., Piette, J., Wilson, B.C., Golab, J.: Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250–281 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chatterjee, D.K., Fong, L., Zhang, Y.: Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliv. Rev. 60, 1627–1637 (2008)

    Article  CAS  PubMed  Google Scholar 

  81. Dolmans, D.E.J.G., Fukumura, J.D., Jain, R.K.: Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003)

    Article  CAS  PubMed  Google Scholar 

  82. Lismont, M., Dreesen, L., Wuttke, S.: Metal-organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv. Funct. Mater. 27, 1606314 (2017)

    Article  Google Scholar 

  83. Secret, E., Maynadier, M., Gallud, A., Chaix, A., Bouffard, E., Gary-Bobo, M., Marcotte, N., Mongin, O., El Cheikh, K., Hugues, V., Auffan, M., Frochot, C., Morère, A., Maillard, P., Blanchard-Desce, M., Sailor, M.J., Garcia, M., Durand, J.O., Cunin, F.: Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy. Adv. Mater. 26, 7643–7648 (2014)

    Article  CAS  PubMed  Google Scholar 

  84. Konan, Y.N., Gurny, R., Allémann, E.: State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B 66, 89–106 (2002)

    Article  CAS  PubMed  Google Scholar 

  85. Chouikrat, R., Seve, A., Vanderesse, R., Benachour, H., Barberi-Heyob, M., Richeter, S., Raehm, L., Durand, J.O., Verelst, M., Frochot, C.: Non-polymeric nanoparticles for photodynamic therapy applications: recent developments. Curr. Med. Chem. 19, 781–792 (2012)

    Article  CAS  PubMed  Google Scholar 

  86. Lu, K., He, C., Lin, W.: Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 136, 16712–16715 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lu, K., He, C., Lin, W.: A chlorin-based nanoscale metal–organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc. 137, 7600–7603 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carvalho, C.M.B., Brocksom, T.J., Oliveira, K.T.: Tetrabenzoporphyrins: synthetic developments and applications. Chem. Soc. Rev. 42, 3302–3317 (2013)

    Article  CAS  PubMed  Google Scholar 

  89. Liu, L.H., Zhang, Y.H., Qiu, W.X., Zhang, L., Gao, F., Li, B., Xu, L., Fan, J.X., Li, Z.H., Zhang, X.Z.: Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small 13, 1701621 (2017)

    Article  Google Scholar 

  90. Gao, S., Zheng, P., Li, Z., Feng, X., Yan, W., Chen, S., Guo, W., Liu, D., Yang, X., Wang, S., Liang, X.J., Zhang, J.: Biomimetic O2-evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. Biomaterials 178, 83–94 (2018)

    Article  CAS  PubMed  Google Scholar 

  91. Liu, J., Liu, T., Du, P., Zhang, L., Lei, J.: Metal–organic framework (MOF) hybrid as a tandem catalyst for enhanced therapy against hypoxic tumor cells. Angew. Chem. Int. Ed. 58, 7808–7812 (2019)

    Article  CAS  Google Scholar 

  92. Zhang, Y., Wang, F., Liu, C., Wang, Z., Kang, L., Huang, Y., Dong, K., Ren, J., Qu, X.G.: Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy. ACS Nano 12, 651–661 (2018)

    Article  CAS  PubMed  Google Scholar 

  93. Zheng, D.W., Li, B., Li, C.X., Fan, J.X., Lei, Q., Li, C., Xu, Z., Zhang, X.Z.: Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano 10, 8715–8722 (2016)

    Article  CAS  PubMed  Google Scholar 

  94. Cairns, R.A., Harris, I.S., Mak, T.W.: Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011)

    Article  CAS  PubMed  Google Scholar 

  95. Chen, F., Chen, J., Yang, L., Liu, J., Zhang, X., Zhang, Y., Tu, Q., Yin, D., Lin, D., Wong, P.P., Huang, D., Xing, Y., Zhao, J., Li, M., Liu, Q., Su, F., Su, S., Song, E.: Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat. Cell Biol. 21, 498–510 (2019)

    Article  CAS  PubMed  Google Scholar 

  96. Li, S.Y., Cheng, H., Xie, B.R., Qiu, W.X., Zeng, J.Y., Li, C.X., Wan, S.S., Zhang, L., Liu, W.L., Zhang, X.Z.: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11, 7006–7018 (2017)

    Article  CAS  PubMed  Google Scholar 

  97. Chen, Y.J., Mahieu, N.G., Huang, X., Singh, M., Crawford, P.A., Johnson, S.L., Gross, R.W., Schaefer, J., Patti, G.J.: Lactate metabolism is associated with mammalian mitochondria. Nat. Chem. Biol. 12, 937–943 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, Z.X., Liu, M.D., Zhang, M.K., Wang, S.B., Xu, L., Li, C.X., Gao, F., Xie, B.R., Zhong, Z.L., Zhang, X.Z.: Interfering with lactate-fueled respiration for enhanced photodynamic tumor therapy by a porphyrinic MOF nanoplatform. Adv. Funct. Mater. 28, 1803498 (2018)

    Article  Google Scholar 

  99. He, L., Ni, Q., Mu, J., Fan, W., Liu, L., Wang, Z., Li, L., Tang, W., Liu, Y., Cheng, Y., Tang, L., Yang, Z., Liu, Y., Zou, J., Yang, W., Jacobson, O., Zhang, F., Huang, P., Chen, X.: Solvent-assisted self-assembly of a metal–organic framework based biocatalyst for cascade reaction driven photodynamic therapy. J. Am. Chem. Soc. 142, 6822–6832 (2020)

    Article  CAS  PubMed  Google Scholar 

  100. Cramer, S.L., Saha, A., Liu, J., Tadi, S., Tiziani, S., Yan, W., Triplett, K., Lamb, C., Alters, S.E., Rowlinson, S., Zhang, Y.J., Keating, M.J., Huang, P., DiGiovanni, J., Georgiou, G., Stone, E.: Systemic depletion of l-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23, 120–127 (2017)

    Article  CAS  PubMed  Google Scholar 

  101. Cheng, Q., Yu, W., Ye, J., Liu, M., Liu, W., Zhang, C., Zhang, C., Feng, J., Zhang, X.Z.: Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials 224, 119500 (2019)

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, W., Lu, J., Gao, X., Li, P., Zhang, W., Ma, Y., Wang, H., Tang, B.: Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center. Angew. Chem. Int. Ed. 57, 4891–4896 (2018)

    Article  CAS  Google Scholar 

  103. Wang, C., Cao, F., Ruan, Y., Jia, X., Zhen, W., Jiang, X.: Specific generation of singlet oxygen through the Russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy. Angew. Chem. Int. Ed. 58, 9846–9850 (2019)

    Article  CAS  Google Scholar 

  104. Miyamoto, S., Martinez, G.R., Medeiros, M.H.G., Mascio, P.: Singlet molecular oxygen generated by biological hydroperoxides. J. Photochem. Photobiol. B 139, 24–33 (2014)

    Article  CAS  PubMed  Google Scholar 

  105. Melancon, M.P., Zhou, M., Li, C.: Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 44, 947–956 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dykman, L., Khlebtsov, N.: Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012)

    Article  CAS  PubMed  Google Scholar 

  107. Tian, Q., Tang, M., Sun, Y., Zou, R., Chen, Z., Zhu, M., Yang, S., Wang, J., Wang, J., Hu, J.: Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 23, 3542–3547 (2011)

    Article  CAS  PubMed  Google Scholar 

  108. Yang, K., Feng, L., Shi, X., Liu, Z.: Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42, 530–547 (2013)

    Article  CAS  PubMed  Google Scholar 

  109. Zhu, Y.D., Chen, S.P., Zhao, H., Yang, Y., Chen, X.Q., Sun, J., Fan, H.S., Zhang, X.D.: PPy@MIL-100 nanoparticles as a pH- and near-IR-irradiation-responsive drug carrier for simultaneous photothermal therapy and chemotherapy of cancer cells. ACS Appl. Mater. Inter. 8, 34209–34217 (2016)

    Article  CAS  Google Scholar 

  110. Jiang, W., Zhang, H., Wu, J., Zhai, G., Li, Z., Luan, Y., Garg, S.: CuS@MOF-based well-designed quercetin delivery system for chemo–photothermal therapy. ACS Appl. Mater. Inter. 10, 34513–34523 (2018)

    Article  CAS  Google Scholar 

  111. Keerthiga, R., Zhao, Z., Pei, D., Fu, A.: Photodynamic nanophotosensitizers: promising materials for tumor theranostics. ACS Biomater. Sci. Eng. 6, 5474–5485 (2020)

    Article  CAS  PubMed  Google Scholar 

  112. Wang, D., Wu, H., Zhou, J., Xu, P., Wang, C., Shi, R., Wang, H., Wang, H., Guo, Z., Chen, Q.: In situ one-pot synthesis of MOF–polydopamine hybrid nanogels with enhanced photothermal effect for targeted cancer therapy. Adv. Sci. 5, 1800287 (2018)

    Article  Google Scholar 

  113. Li, B., Wang, X., Chen, L., Zhou, Y., Dang, W., Chang, J., Wu, C.: Ultrathin Cu-TCPP MOF nanosheets: a new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers. Theranostics 8, 4086–4096 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, C., Bu, W., Ni, D., Zhang, S., Li, Q., Yao, Z., Zhang, J., Yao, H., Wang, Z., Shi, J.: Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew. Chem. Int. Ed. 55, 2101–2106 (2016)

    Article  CAS  Google Scholar 

  115. Tang, Z., Liu, Y., He, M., Bu, W.: Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions. Angew. Chem. Int. Ed. 58, 946–956 (2019)

    Article  CAS  Google Scholar 

  116. Zhang, L., Wan, S.S., Li, C.X., Xu, L., Cheng, H., Zhang, X.Z.: An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 18, 7609–7618 (2018)

    Article  CAS  PubMed  Google Scholar 

  117. Yu, P., Li, X.D., Cheng, G.H., Zhang, X., Wu, D., Chang, J., Wang, S.: Hydrogen peroxide-generating nanomedicine for enhanced chemodynamic therapy. Chin. Chem. Lett. 32, 2127–2138 (2021)

    Article  CAS  Google Scholar 

  118. Liou, G.Y., Storz, P.: Reactive oxygen species in cancer. Free Radic. Res. 44, 479–496 (2010)

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, Y., Lin, L., Liu, L., Liu, F., Sheng, S., Tian, H., Chen, X.: Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. Biomaterials 216, 119255 (2019)

    Article  CAS  PubMed  Google Scholar 

  120. Wang, D., Zhou, J., Chen, R., Shi, R., Xia, G., Zhou, S., Liu, Z., Zhang, N., Wang, H., Guo, Z., Chen, Q.: Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles. Biomaterials 107, 88–101 (2016)

    Article  CAS  PubMed  Google Scholar 

  121. Xue, T., Xu, C., Wang, Y., Wang, Y., Tian, H., Zhang, Y.: Doxorubicin-loaded nanoscale metal–organic framework for tumor-targeting combined chemotherapy and chemodynamic therapy. Biomater. Sci. 7, 4615–4623 (2019)

    Article  CAS  PubMed  Google Scholar 

  122. Wang, Q., Tian, S., Ning, P.: Ferrocene-catalyzed heterogeneous fenton-like degradation of methylene blue: influence of initial solution pH. Ind. Eng. Chem. Res. 53, 6334–6340 (2014)

    Article  CAS  Google Scholar 

  123. Ornelas, C.: Application of ferrocene and its derivatives in cancer research. New J. Chem. 35, 1973–1985 (2011)

    Article  CAS  Google Scholar 

  124. Jaouen, G., Vessières, A., Top, S.: Ferrocifen type anticancer drugs. Chem. Soc. Rev. 44, 8802–8817 (2015)

    Article  CAS  PubMed  Google Scholar 

  125. Fang, C., Deng, Z., Cao, G., Chu, Q., Wu, Y., Li, X., Peng, X., Han, G.: Co–ferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy. Adv. Funct. Mater. 30, 1910085 (2020)

    Article  CAS  Google Scholar 

  126. Ranji-Burachaloo, H., Karimi, F., Xie, K., Fu, Q., Gurr, P.A., Dunstan, D.E., Qiao, G.G.: MOF-mediated destruction of cancer using the cell’s own hydrogen peroxide. ACS Appl. Mater. Inter. 9, 33599–33608 (2017)

    Article  CAS  Google Scholar 

  127. Brenner, D.J., Ward, J.F.: Constraints on energy deposition and target size of multiply damaged sites associated with DNA double-strand breaks. Int. J. Radiat. Biol. 61, 737–748 (1992)

    Article  CAS  PubMed  Google Scholar 

  128. Song, G., Cheng, L., Chao, Y., Yang, K., Liu, Z.: Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 29, 1700996 (2017)

    Article  Google Scholar 

  129. Pallares, R.M., Abergel, R.J.: Nanoparticles for targeted cancer radiotherapy. Nano Res. 13, 2887–2897 (2020)

    Article  CAS  Google Scholar 

  130. Li, S., Tan, L., Meng, X.: Nanoscale metal-organic frameworks: synthesis, biocompatibility, imaging applications, and thermal and dynamic therapy of tumors. Adv. Funct. Mater. 30, 1908924 (2020)

    Article  CAS  Google Scholar 

  131. Ma, T., Liu, Y., Wu, Q., Luo, L., Cui, Y., Wang, X., Chen, X., Tan, L., Meng, X.: Quercetin-modified metal–organic frameworks for dual sensitization of radiotherapy in tumor tissues by inhibiting the carbonic anhydrase IX. ACS Nano 13, 4209–4219 (2019)

    Article  CAS  PubMed  Google Scholar 

  132. Wang, C., Volotskova, O., Lu, K., Ahmad, M., Sun, C., Xing, L., Lin, W.: Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal–organic frameworks for highly efficient X-ray scintillation. J. Am. Chem. Soc. 136, 6171–6174 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Misawa, M., Takahashi, J.: Generation of reactive oxygen species induced by gold nanoparticles under X-ray and UV irradiations. Nanomed. Nanotechnol. 7, 604–614 (2011)

    Article  CAS  Google Scholar 

  134. Song, G., Ji, C., Liang, C., Song, X., Yi, X., Dong, Z., Yang, K., Liu, Z.: TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. Biomaterials 112, 257–263 (2017)

    Article  CAS  PubMed  Google Scholar 

  135. Zhu, H., Cheng, P., Chen, P., Pu, K.: Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater. Sci. 6, 746–765 (2018)

    Article  CAS  PubMed  Google Scholar 

  136. Gong, H., Dong, Z., Liu, Y., Yin, S., Cheng, L., Xi, W., Xiang, J., Liu, K., Li, Y., Liu, Z.: Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv. Funct. Mater. 24, 6492–6502 (2014)

    Article  CAS  Google Scholar 

  137. Gai, S., Yang, G., Yang, P., He, F., Lin, J., Jin, D., Xing, B.: Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today 19, 146–187 (2018)

    Article  CAS  Google Scholar 

  138. Wang, L., Qu, X., Zhao, Y., Weng, Y., Waterhouse, G.I.N., Yan, H., Guan, S., Zhou, S.: Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy. ACS Appl. Mater. Interfaces 11, 35228–35237 (2019)

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, K., Meng, X., Cao, Y., Yang, Z., Dong, H., Zhang, Y., Lu, H., Shi, Z., Zhang, X.: Metal–organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy. Adv. Funct. Mater. 28, 1804634 (2018)

    Article  Google Scholar 

  140. Liu, J., Zhang, L., Lei, J., Shen, H., Ju, H.: Multifunctional metal–organic framework nanoprobe for cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy. ACS Appl. Mater. Interfaces 9, 2150–2158 (2017)

    Article  CAS  PubMed  Google Scholar 

  141. Zhu, W., Yang, Y., Jin, Q., Chao, Y., Tian, L., Liu, J., Dong, Z., Liu, Z.: Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 12, 1307–1312 (2019)

    Article  CAS  Google Scholar 

  142. Luo, Z., Jiang, L., Yang, S., Li, Z., Soh, W.M.W., Zheng, L., Loh, X.J., Wu, Y.L.: Light-induced redox-responsive smart drug delivery system by using selenium-containing polymer@MOF shell/core nanocomposite. Adv. Healthc. Mater. 8, 1900406 (2019)

    Article  Google Scholar 

  143. Feng, J., Xu, Z., Dong, P., Yu, W., Liu, F., Jiang, Q., Wang, F., Liu, X.: Stimuli-responsive multifunctional metal-organic framework nanoparticles for enhanced chemo-photothermal therapy. J. Mater. Chem. B 7, 994–1004 (2019)

    Article  CAS  PubMed  Google Scholar 

  144. Zeng, J.Y., Zhang, M.K., Peng, M.Y., Gong, D., Zhang, X.Z.: Porphyrinic metal–organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Adv. Funct. Mater. 28, 1705451 (2018)

    Article  Google Scholar 

  145. Ni, K.Y., Lan, G.X., Veroneau, S.S., Duan, X.P., Song, Y., Lin, W.B.: Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat. Commun. 9, 4321 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cai, Z., Xin, F., Wei, Z., Wu, M., Lin, X., Du, X., Chen, G., Zhang, D., Zhang, Z., Liu, X., Yao, C.: Photodynamic therapy combined with antihypoxic signaling and CpG adjuvant as an in situ tumor vaccine based on metal–organic framework nanoparticles to boost cancer immunotherapy. Adv. Health. Mater. 9, 1900996 (2020)

    Article  CAS  Google Scholar 

  147. Shao, Y., Liu, B., Di, Z., Zhang, G., Sun, L.D., Li, L., Yan, C.H.: Engineering of upconverted metal–organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 142, 3939–3946 (2020)

    Article  CAS  PubMed  Google Scholar 

  148. Gautam, S., Singhal, J., Lee, H.K., Chae, K.H.: Drug delivery of paracetamol by metal-organic frameworks (HKUST-1): improvised synthesis and investigations. Mater. Today Chem. 23, 100647 (2022)

    Article  CAS  Google Scholar 

  149. Wen, T., Quan, G.L., Niu, B.Y., Zhou, Y.X., Zhao, Y.T., Lu, C., Pan, X., Wu, C.N.: Versatile nanoscale metal-organic frameworks (nMOFs): an emerging 3D nanoplatform for drug delivery and therapeutic applications. Small 17, 2005064 (2021)

    Article  CAS  Google Scholar 

  150. Li, S., Tan, L., Meng, X.: Nanoscale metal - organic frameworks: synthesis, biocompatibility, imaging applications, thermal and dynamic therapy of tumors. Adv. Funct. Mater. 30, 1908924 (2020)

    Article  CAS  Google Scholar 

  151. Liu, J.T., Huang, J., Zhang, L., Lei, J.P.: Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chem. Soc. Rev. 50, 1188–1218 (2021)

    Article  CAS  PubMed  Google Scholar 

  152. Liu, W.C., Pan, Y., Zhong, Y.T., Li, B.H., Ding, Q.J., Xu, H.J., Qiu, Y.Z., Ren, F., Li, B., Muddassir, M., Liu, J.Q.: A multifunctional aminated UiO-67 metal-organic framework for enhancing antitumor cytotoxicity through bimodal drug delivery. Chem. Eng. J. 412, 127899 (2021)

    Article  CAS  Google Scholar 

  153. Liu, W.C., Yan, Q.W., Xia, C., Wang, X.X., Kumar, A., Wang, Y., Liu, Y.W., Pan, Y., Liu, J.Q.: Recent advances in cell membrane coated metal-organic frameworks (MOFs) for tumor therapy. J. Mater. Chem. B 9, 4459–4474 (2021)

    Article  CAS  PubMed  Google Scholar 

  154. Sepehrpour, H., Fu, W.X., Sun, Y., Stang, P.J.: Biomedically relevant self-assembled metallacycles and metallacages. J. Am. Chem. Soc. 141, 14005–14020 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sun, Y., Chen, C.Y., Liu, J.B., Stang, P.J.: Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem. Soc. Rev. 49, 3889–3919 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (22022412, 21874155, 22104060), the Natural Science Foundation of Jiangsu Province (BK20200716, BK20191316), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB150019), Innovation and Entrepreneurship Doctor Program of Jiangsu Province (JSSCBS20210317), the State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS2106), and the Qing-Lan Project of Jiangsu Province (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Liao.

Ethics declarations

Conflict of interest

All authors have given approval to the final version of the manuscript. There is no conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised to update the email id of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lei, P., Liao, X. et al. Nanoscale metal–organic frameworks as smart nanocarriers for cancer therapy. J Nanostruct Chem 14, 1–19 (2024). https://doi.org/10.1007/s40097-022-00493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00493-2

Keywords

Navigation