Skip to main content
Log in

Nanostructured metal–organic framework-based luminescent sensor for chemical sensing: current challenges and future prospects

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

From its inception, an astonishing movement has been made in the architecture and fabrication of a fresh category of nanostructured material acknowledged as luminescent metal–organic frameworks (MOFs). Luminescent MOFs are self-assembled nanostructure by coordinating suitable metal cations or clusters and ideal organic linkers, which exhibited an abundance of merits for sensing of interest of analytes, such as chemicals, metal ions, biomarkers, etc. Herein, tunable surface morphology and diverse functionality of luminescent MOFs offer high sensitivity, high selectivity, good stability, recyclability, real-time applicability, etc. Additionally, the accessible porosity and luminescence property of nanostructured MOFs provides the transducing potential from host–guest chemistry to recognizable improvement in nanosize MOFs luminescence. Therefore, in this review article, we have summarized the nanostructured design of MOFs-based luminescent sensors for chemical and metal ions sensing. At first, the requirement of monitoring of chemical residues and metal ions exposure has been discussed that demonstrates the topical necessity for the chemical and metal ions recognition. Afterward, the current trends of MOFs-centered sensors, synthesis types, and their properties have been elaborated in brief. It revealed that several theoretical sensing mechanisms, such as electron transfer, energy transfer, ligand interaction, overlapping effect, oscillation effect, inner filter effect, decomposition, etc., are accountable for sensing of metal ions and chemical residues. The applications of nano-architectured MOFs-based luminescent sensors for chemical as well as metal ions sensing have been illustrated, which exhibit the lowest detection limit (μM–nM) for both metal ions and chemicals. Interestingly, the nanostructured MOFs relied on luminescent sensors that exhibited high sensitivity and selectivity for the chemical and metal ions in presence of diverse interfering substances. Surface functionality presented on the surface of nano-size MOFs, types of ligands, and selected metal ions provides precise recognition of real-time samples containing metal ions and chemicals. On the whole, the nanostructured design of a MOFs-based luminescent sensor will release a fresh preference for sensing of a target analyte.

Graphical abstract

Nanostructured metal-organic frameworks based luminescent sensor for chemical and metal ions sensing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Copyright © 2012 Wiley–VCH Verlag GmbH and Co. KGaA, Weinheim.]

Fig. 8

Copyright © 2013, American Chemical Society.]

Fig. 9

Copyright © 2017 Elsevier.]

Fig. 10

Copyright © 2013 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim]

Fig. 11

Copyright © 2014, American Chemical Society]

Fig. 12

Copyright © 2019 Elsevier.]

Fig. 13

Copyright © 2019 Elsevier.]

Fig. 14

Copyright © 2016, American Chemical Society]

Fig. 15

Copyright © 2018 Elsevier.]

Fig. 16

Copyright © 2021, American Chemical Society]

Fig. 17

Copyright © 2021 Elsevier B.V. All rights reserved.]

Fig. 18

Copyright © 2021 Elsevier.]

Similar content being viewed by others

References

  1. Carter, K.P., Young, A.M., Palmer, A.E.: Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 114, 4564–4601 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mei, C.J., Ahmad, S.A.A.: A review on the determination heavy metals ions using calixarene-based electrochemical sensors. Arab. J. Chem. 14, 103303 (2021)

    Article  Google Scholar 

  3. Fan, L., Zhao, D., Zhang, H., Wang, F., Li, B., Yang, L., Deng, Y., Zhang, X.: A hydrolytically stable amino-functionalized Zinc (II) metal-organic framework containing nanocages for selective gas adsorption and luminescent sensing. Microporous Mesoporous Mater. 326, 111396 (2021)

    Article  CAS  Google Scholar 

  4. Scharf, B., Clement, C.C., Zolla, V., Perino, G., Yan, B., Elci, S.G., Purdue, E., Goldring, S., Macaluso, F., Cobelli, N.: Molecular analysis of chromium and cobalt-related toxicity. Sci. Rep. 4, 1–12 (2014)

    Article  Google Scholar 

  5. Kim, H.S., Kim, Y.J., Seo, Y.R.: An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J. Cancer Prev. 20, 232 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun, K., Song, Y., He, F., Jing, M., Tang, J., Liu, R.: A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci. Total Environ. 145403 (2021).

  7. Nangare, S. N., Patil, S. R., Patil, A. G., Khan, Z. G., Deshmukh, P. K., Tade, R. S., Mahajan, M. R., Bari, S. B., Patil, P. O.: Structural design of nanosize-metal–organic framework-based sensors for detection of organophosphorus pesticides in food and water samples: current challenges and future prospects. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-021-00449-y.

  8. Zhang, Z., Lou, Y., Guo, C., Jia, Q., Song, Y., Tian, J.-Y., Zhang, S., Wang, M., He, L., Du, M.: Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol. 118, 569–588 (2021)

    Article  CAS  Google Scholar 

  9. Lebelo, K., Malebo, N., Mochane, M.J., Masinde, M.: Chemical contamination pathways and the food safety implications along the various stages of food production: a review. Int. J. Environ. Res. Public Health. 18, 5795 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Z., Zhang, X., Rajh, T., Guha, S.: Photonic microresonator based sensor for selective nitrate ion detection. Sens. Actuators B Chem. 328, 129027 (2021)

    Article  CAS  Google Scholar 

  11. Seenan, S., Sathiyanarayanan, K.I.: A multisensing ratiometric fluorescent sensor for recognition of Al3+, Th4+ and picric acid. Inorg. Chem. Commun. 132, 108825 (2021)

    Article  CAS  Google Scholar 

  12. Wei, Y.-B., Wang, M.-J., Luo, D., Huang, Y.-L., Xie, M., Lu, W., Shu, X., Li, D.: Ultrasensitive and highly selective detection of formaldehyde via an adenine-based biological metal–organic framework. Mater. Chem. Front. 5, 2416–2424 (2021)

    Article  CAS  Google Scholar 

  13. McRae, R., Bagchi, P., Sumalekshmy, S., Fahrni, C.J.: In situ imaging of metals in cells and tissues. Chem. Rev. 109, 4780–4827 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. Mi, X., Sheng, D., Yu, Ye., Wang, Y., Zhao, L., Lu, J., Li, Y., Li, D., Dou, J., Duan, J.: Tunable light emission and multiresponsive luminescent sensitivities in aqueous solutions of two series of lanthanide metal–organic frameworks based on structurally related ligands. ACS Appl. Mater. Interfaces. 11, 7914–7926 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. Banerjee, D., Hu, Z., Li, J.: Luminescent metal–organic frameworks as explosive sensors. Dalton Trans. 43, 10668–10685 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. Sun, J., Du, H., Chen, Z., Wang, L., Shen, G.: MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 1–7 (2021).

  17. Mu, S., Liu, Q., Kidkhunthod, P., Zhou, X., Wang, W., Tang, Y.: Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 8, 78 (2021)

    Google Scholar 

  18. Guan, H., Huang, S., Ding, J., Tian, F., Xu, Q., Zhao, J.: Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater. 187, 122–134 (2020)

    Article  CAS  Google Scholar 

  19. Wang, T., Liu, W., Zhao, J., Guo, X., Terzija, V.: A rough set-based bio-inspired fault diagnosis method for electrical substations. Int J. Electr. Power Energy Syst. 119, 105961 (2020)

    Article  Google Scholar 

  20. Tang, X., Wu, J., Wu, W., Zhang, Z., Zhang, W., Zhang, Q., Zhang, W., Chen, X., Li, P.: Anal. Chem. 92, 3563–3571 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. He, H., Zhu, Q.-Q., Yan, Y., Zhang, H.-W., Han, Z.-Y., Sun, H., Chen, J., Li, C.-P., Zhang, Z., Du, M.: Metal–organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3. Appl. Catal. B: Environ. 302, 120840 (2021)

    Article  Google Scholar 

  22. Hu, K., Wang, F., Shen, Z., Liu, H., Xiong, J.: Ternary heterojunctions synthesis and sensing mechanism of Pd/ZnO–SnO2 hollow nanofibers with enhanced H2 gas sensing properties. J. Alloys Compd. 850, 156663 (2021)

    Article  CAS  Google Scholar 

  23. Saha, S., De, A., Ghosh, A., Ghosh, A., Bera, K., Das, K.S., Akhtar, S., Maiti, N.C., Das, A.K., Das, B.B.: Pyridine-pyrazole based Al (iii)‘turn on’sensor for MCF7 cancer cell imaging and detection of picric acid. RSC Adv. 11, 10094–10109 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang, Z., Qiu, T., Gao, S., Zhong, R., Zou, R.: Multi-scale design of metal–organic framework-derived materials for energy electrocatalysis. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202003410

    Article  Google Scholar 

  25. Zhao, D., Yu, K., Han, X., He, Y., Chen, B.: Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption. Chem. Commun. 58, 747–770 (2022)

    Article  CAS  Google Scholar 

  26. Chakraborty, G., Park, I.-H., Medishetty, R., Vittal, J.J.: Two-dimensional metal-organic framework materials: synthesis, structures, properties and applications. Chem. Rev. 121, 3751–3891 (2021)

    Article  CAS  PubMed  Google Scholar 

  27. Nangare, S. N., Sangale, P., Patil, A. G., Boddu, S. H., Deshmuk, P. K., Jadhav, N. R., Tade, R. S., Patil, D. R., Pandey, A., Mutalik, S.: Surface architectured metal organic frameworks-based biosensor for ultrasensitive detection of uric acid: Recent advancement and future perspective. Microchem J. 106567 (2021).

  28. Yu, S., Pang, H., Huang, S., Tang, H., Wang, S., Qiu, M., Chen, Z., Yang, H., Song, G., Fu, D.: Recent advances in metal-organic framework membranes for water treatment: a review. Sci. Total Environ. 800, 149662 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. Li, X.-Y., Song, Y., Zhang, C.-X., Zhao, C.-X., He, C.: Inverse CO2/C2H2 separation in a pillared-layer framework featuring a chlorine-modified channel by quadrupole-moment sieving. Sep. Purif. Technol. 279, 119608 (2021)

    Article  CAS  Google Scholar 

  30. Liu, J., Huang, J., Zhang, L., Lei, J.: Multifunctional metal–organic framework heterostructures for enhanced cancer therapy. Chem. Soc. Rev. 50, 1188–1218 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. Wang, R., He, C., Chen, W., Fu, L., Zhao, C., Huo, J., Sun, C.: Design strategies of two-dimensional metal–organic frameworks toward efficient electrocatalysts for N2 reduction: cooperativity of transition metals and organic linkers. Nanoscale 13, 19247–19254 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, J., Zeng, C., Ou, H., Yang, Q., Xie, Q., Zeb, A., Lin, X., Ali, Z., Hu, L.: Metal-organic framework-based materials for full cell systems: a review. J. Mater. Chem. C. 9, 11030–11058 (2021)

    Article  CAS  Google Scholar 

  33. Chen, B., Wang, L., Xiao, Y., Fronczek, F.R., Xue, M., Cui, Y., Qian, G.: A luminescent metal–organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 48, 500–503 (2009)

    Article  CAS  Google Scholar 

  34. Rani, S., Kataria, N.: Metal− organic framework and its nanocomposites as chemical sensors, in metal− organic frameworks for environmental sensing. Metal− Organic Framework and Its Nanocomposites as Chemical Sensors, ACS Publications, pp. 83–124 (2021). https://doi.org/10.1021/bk-2021-1394.ch004.

  35. Ma, L., Lin, W.: Designing metal-organic frameworks for catalytic applications. Top. Curr. Chem. 293, 175–205 (2009)

    Article  Google Scholar 

  36. Zhu, Q.-L., Xu, Q.: Metal–organic framework composites. Chem. Soc. Rev 43, 5468–5512 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. Liu, C.-S., Li, J., Pang, H.: Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord. Chem. Rev. 410, 213222 (2020)

    Article  CAS  Google Scholar 

  38. Bennett, T.D., Cheetham, A.K.: Amorphous metal–organic frameworks. Acc Chem. Res. 47, 1555–1562 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Fonseca, J., Gong, T., Jiao, L., Jiang, H.-L.: Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A. 9, 10562–10611 (2021)

    Article  CAS  Google Scholar 

  40. Orellana-Tavra, C., Baxter, E.F., Tian, T., Bennett, T.D., Slater, N.K., Cheetham, A.K., Fairen-Jimenez, D.: Amorphous metal–organic frameworks for drug delivery. Chem. Commun. 51, 13878–13881 (2015)

    Article  CAS  Google Scholar 

  41. Lee, T., Liu, Z.X., Lee, H.L.: A biomimetic nose by microcrystals and oriented films of luminescent porous metal–organic frameworks. Cryst. Growth Des. 11, 4146–4154 (2011)

    Article  CAS  Google Scholar 

  42. Bennett, T.D., Goodwin, A.L., Dove, M.T., Keen, D.A., Tucker, M.G., Barney, E.R., Soper, A.K., Bithell, E.G., Tan, J.-C., Cheetham, A.K.: Structure and properties of an amorphous metal-organic framework. Phys. Rev. Lett. 104, 115503 (2010)

    Article  PubMed  Google Scholar 

  43. Zhang, L., Yan, Z., Chen, X., Yu, M., Liu, F., Cheng, F., Chen, J.: Facile synthesis of amorphous MoS x–Fe anchored on Zr-MOFs towards efficient and stable electrocatalytic hydrogen evolution. Chem. Commun. 56, 2763–2766 (2020)

    Article  CAS  Google Scholar 

  44. Fonseca, J., Choi, S.: Synthesis of a novel amorphous metal organic framework with hierarchical porosity for adsorptive gas separation. Microporous Mesoporous Mater. 310, 110600 (2021)

    Article  CAS  Google Scholar 

  45. Fonseca, J., Choi, S.: Flexible amorphous metal–organic frameworks with π Lewis acidic pore surface for selective adsorptive separations. Dalton Trans. 50, 3145–3154 (2021)

    Article  CAS  PubMed  Google Scholar 

  46. Garg, N., Deep, A., Sharma, A.L.: Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases. Coord. Chem. Rev. 445, 214073 (2021)

    Article  CAS  Google Scholar 

  47. Dang, S., Zhu, Q.-L., Xu, Q.: Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3, 1–14 (2017)

    Article  Google Scholar 

  48. Cui, Y., Chen, B., Qian, G.: Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev. 273, 76–86 (2014)

    Article  Google Scholar 

  49. Deng, Y., Wu, Y., Chen, G., Zheng, X., Dai, M., Peng, C.: Metal-organic framework membranes: recent development in the synthesis strategies and their application in oil-water separation. Chem. Eng. J. 405, 127004 (2021)

    Article  CAS  Google Scholar 

  50. Zhang, L., Kang, Z., Xin, X., Sun, D.: Metal–organic frameworks based luminescent materials for nitroaromatics sensing. CrystEngComm 18, 193–206 (2016)

    Article  CAS  Google Scholar 

  51. Zhang, X.-P., Wang, D.-G., Su, Y., Tian, H.-R., Lin, J.-J., Feng, Y.-L., Cheng, J.-W.: Luminescent 2D bismuth–cadmium–organic frameworks with tunable and white light emission by doping different lanthanide ion. Dalton Trans. 42, 10384–10387 (2013)

    Article  CAS  PubMed  Google Scholar 

  52. Li, L., Zhang, S., Han, L., Sun, Z., Luo, J., Hong, M.: A non-centrosymmetric dual-emissive metal–organic framework with distinct nonlinear optical and tunable photoluminescence properties. Crys. Growth Design. 13, 106–110 (2013)

    Article  CAS  Google Scholar 

  53. Wang, S.-J., Li, Q., Xiu, G.-L., You, L.-X., Ding, F., Van Deun, R., Dragutan, I., Dragutan, V., Sun, Y.-G.: New Ln-MOFs based on mixed organic ligands: synthesis, structure and efficient luminescence sensing of the Hg2+ ions in aqueous solutions. Dalton Trans. 50, 15612–15619 (2021)

    Article  CAS  PubMed  Google Scholar 

  54. Asad, M., Wang, S., Wang, Q.-Y., Li, L.-K., Anwar, M.I., Younas, A., Zang, S.-Q.: Aqueous media ultra-sensitive detection of antibiotics via highly stable luminescent 3D Cadmium-based MOF. New J. Chem. 45, 20887–20894 (2021)

    Article  CAS  Google Scholar 

  55. Feng, P.L., Leong, K., Allendorf, M.D.: Charge-transfer guest interactions in luminescent MOFs: implications for solid-state temperature and environmental sensing. Dalton Trans. 41, 8869–8877 (2012)

    Article  CAS  PubMed  Google Scholar 

  56. Guo, Z., Xu, H., Su, S., Cai, J., Dang, S., Xiang, S., Qian, G., Zhang, H., O’keeffe, M., Chen, B.: A robust near infrared luminescent ytterbium metal–organic framework for sensing of small molecules. Chem. Commun. 47, 5551–5553 (2011)

    Article  CAS  Google Scholar 

  57. Xiao, J., Liu, J., Liu, M., Ji, G., Liu, Z.: Fabrication of a luminescence-silent system based on a post-synthetic modification Cd-MOFs: a highly selective and sensitive turn-on luminescent probe for ascorbic acid detection. Inorg. Chem. 58, 6167–6174 (2019)

    Article  CAS  PubMed  Google Scholar 

  58. Cadiau, A., Brites, C.D., Costa, P.M., Ferreira, R.A., Rocha, J., Carlos, L.D.: Ratiometric nanothermometer based on an emissive Ln3+-organic framework. ACS Nano 7, 7213–7218 (2013)

    Article  CAS  PubMed  Google Scholar 

  59. Lin, Z.-G., Song, F.-Q., Wang, H., Song, X.-Q., Yu, X.-X., Liu, W.-S.: The construction of a novel luminescent lanthanide framework for the selective sensing of Cu2+ and 4-nitrophenol in water. Dalton Trans. 50, 1874–1886 (2021)

    Article  CAS  PubMed  Google Scholar 

  60. Yang, H., Wang, F., Tan, Y.X., Kang, Y., Li, T.H., Zhang, J.: Charge matching on designing neutral cadmium–lanthanide–organic open frameworks for luminescence sensing. Chem Asian J. 7, 1069–1073 (2012)

    Article  CAS  PubMed  Google Scholar 

  61. Kim, T.K., Lee, J.H., Moon, D., Moon, H.R.: Luminescent Li-based metal–organic framework tailored for the selective detection of explosive nitroaromatic compounds: direct observation of interaction sites. Inorg. Chem. 52, 589–595 (2013)

    Article  CAS  PubMed  Google Scholar 

  62. Lei, M., Ge, F., Gao, X., Shi, Z., Zheng, H.: A water-stable Tb-MOF as a rapid, accurate, and highly sensitive ratiometric luminescent sensor for the discriminative sensing of antibiotics and D2O in H2O. Inorg. Chem. 60, 10513–10521 (2021)

    Article  CAS  PubMed  Google Scholar 

  63. Gutierrez, M., Martín, C., Souza, B.E., Van der Auweraer, M., Hofkens, J., Tan, J.-C.: Highly luminescent silver-based MOFs: scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. Appl. Mater. Today. 21, 100817 (2020)

    Article  Google Scholar 

  64. Shustova, N. B., Cozzolino, A. F., Reineke, S., Baldo, M., Dincă, M.: Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal–organic frameworks with open metal sites. J. Am. Chem. Soc.. 135, 13326–13329 (2013).

  65. He, Q.-Q., Yao, S.-L., Zheng, T.-F., Xu, H., Liu, S.-J., Chen, J.-L., Li, N., Wen, H.-R.: Multi-responsive luminescent sensor based on a stable Eu (III) metal-organic framework for sensing Fe3+, MnO4−, and Cr2O72− in aqueous solution. CrystEngComm (2022). https://doi.org/10.1039/D1CE01503F

    Article  Google Scholar 

  66. Shan, X.-C., Jiang, F.-L., Yuan, D.-Q., Zhang, H.-B., Wu, M.-Y., Chen, L., Wei, J., Zhang, S.-Q., Pan, J., Hong, M.-C.: A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character. Chem. Sci. 4, 1484–1489 (2013)

    Article  CAS  Google Scholar 

  67. Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G., Varganici, C.-D., Train, C., Cazacu, M.: Flexible linkers and dinuclear metallic nodes build up an original metal–organic framework. CrystEngComm 15, 5368–5375 (2013)

    Article  CAS  Google Scholar 

  68. Ferrando-Soria, J., Khajavi, H., Serra-Crespo, P., Gascon, J., Kapteijn, F., Julve, M., Lloret, F., Pasán, J., Ruiz-Pérez, C., Journaux, Y.: Highly selective chemical sensing in a luminescent nanoporous magnet. Adv. Mater. 24, 5625–5629 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, Y., Yang, Q., Cuan, J., Wang, Y., Gan, N., Cao, Y., Li, T.: A pyrene-involved luminescent MOF for monitoring 1-hydroxypyrene, a biomarker for human intoxication of PAH carcinogens. Analyst. 143, 3628–3634 (2018)

    Article  CAS  PubMed  Google Scholar 

  70. Liu, W., Chen, C., Wu, Z., Pan, Y., Ye, C., Mu, Z., Luo, X., Chen, W., Liu, W.: Construction of multifunctional luminescent lanthanide MOFs by hydrogen bond functionalization for picric acid detection and fluorescent dyes encapsulation. ACS Sustain. Chem. Eng. 8, 13497–13506 (2020)

    Article  CAS  Google Scholar 

  71. Kent, C.A., Liu, D., Meyer, T.J., Lin, W.: Amplified luminescence quenching of phosphorescent metal–organic frameworks. J. Am. Chem. Soc. 134, 3991–3994 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. Li, C., Hai, J., Li, S., Wang, B., Yang, Z.: Luminescent magnetic nanoparticles encapsulated in MOFs for highly selective and sensitive detection of ClO−/SCN− and anti-counterfeiting. Nanoscale 10, 8667–8676 (2018)

    Article  CAS  PubMed  Google Scholar 

  73. Lee, H. L., Lee, T., Liu, Z. X., Tsai, M. H., Tsai, Y. C., Lin, T. Y., Cheng, S. L., Lee, S. W., Hu, J. C., Chen, L. T.: A taste and odor sensing by photoluminescence responses of luminescent metal organic frameworks, Trans Tech Publ. 392–397(2013).

  74. Han, Y.-H., Tian, C.-B., Li, Q.-H., Du, S.-W.: Highly chemical and thermally stable luminescent EuxTb1− x MOF materials for broad-range pH and temperature sensors. J. Mater. Chem. C. 2, 8065–8070 (2014)

    Article  CAS  Google Scholar 

  75. Xu, H., Gao, J., Qian, X., Wang, J., He, H., Cui, Y., Yang, Y., Wang, Z., Qian, G.: Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A. 4, 10900–10905 (2016)

    Article  CAS  Google Scholar 

  76. Fan, T., Xia, T., Zhang, Q., Cui, Y., Yang, Y., Qian, G.: A porous and luminescent metal-organic framework containing triazine group for sensing and imaging of Zn2+. Microporous Mesoporous Mater. 266, 1–6 (2018)

    Article  CAS  Google Scholar 

  77. He, H., Sun, F., Borjigin, T., Zhao, N., Zhu, G.: Tunable colors and white-light emission based on a microporous luminescent Zn (II)-MOF: Dalton Trans. 43, 3716–3721 (2014).

  78. Pandey, A., Dhas, N., Deshmukh, P., Caro, C., Patil, P., García-Martín, M.L., Padya, B., Nikam, A., Mehta, T., Mutalik, S.: Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: a state-of-the-art review. Coord. Chem. Rev. 409, 213212 (2020)

    Article  CAS  Google Scholar 

  79. Shu, J.C., Cao, W.Q., Cao, M.S.: Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202100470

    Article  Google Scholar 

  80. Yoo, Y., Varela-Guerrero, V., Jeong, H.-K.: Isoreticular metal− organic frameworks and their membranes with enhanced crack resistance and moisture stability by surfactant-assisted drying. Langmuir 27, 2652–2657 (2011)

    Article  CAS  PubMed  Google Scholar 

  81. Dey, C., Kundu, T., Biswal, B. P., Mallick, A., Banerjee, R.: Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 70, 3–10 (2014).

  82. Butova, V.V.E., Soldatov, M.A., Guda, A.A., Lomachenko, K.A., Lamberti, C.: Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 85, 280 (2016)

    Article  CAS  Google Scholar 

  83. Huang, L., Wang, H., Chen, J., Wang, Z., Sun, J., Zhao, D., Yan, Y.: Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater. 58, 105–114 (2003)

    Article  CAS  Google Scholar 

  84. Huang, X.C., Lin, Y.Y., Zhang, J.P., Chen, X.M.: Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc (II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 45, 1557–1559 (2006)

    Article  CAS  Google Scholar 

  85. Qiu, L.-G., Li, Z.-Q., Wu, Y., Wang, W., Xu, T., Jiang, X.: Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chem Comm. (2008). https://doi.org/10.1039/B804126A

    Article  PubMed  Google Scholar 

  86. Garay, A.L., Pichon, A., James, S.L.: Solvent-free synthesis of metal complexes. Chem. Soc. Rev. 36, 846–855 (2007)

    Article  CAS  PubMed  Google Scholar 

  87. Friščić, T., Reid, D.G., Halasz, I., Stein, R.S., Dinnebier, R.E., Duer, M.J.: Ion-and liquid-assisted grinding: improved mechanochemical synthesis of metal–organic frameworks reveals salt inclusion and anion templating. Angew. Chem. 122, 724–727 (2010)

    Article  Google Scholar 

  88. Yuan, W., Friščić, T., Apperley, D., James, S.L.: High reactivity of metal–organic frameworks under grinding conditions: parallels with organic molecular materials. Angew. Chem Int. Ed. 49, 3916–3919 (2010)

    Article  CAS  Google Scholar 

  89. Li, P.-Z., Wang, X.-J., Li, Y., Zhang, Q., Tan, R.H.D., Lim, W.Q., Ganguly, R., Zhao, Y.: Co (II)-tricarboxylate metal–organic frameworks constructed from solvent-directed assembly for CO2 adsorption. Microporous Mesoporous Mater. 176, 194–198 (2013)

    Article  CAS  Google Scholar 

  90. Ahmadi, M., Ayyoubzadeh, S.M., Ghorbani-Bidkorbeh, F., Shahhosseini, S., Dadashzadeh, S., Asadian, E., Mosayebnia, M., Siavashy, S.: An investigation of affecting factors on MOF characteristics for biomedical applications: a systematic review. Heliyon. 7, e06914 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, L., Jia, H.-Y., Hong, X.-J., Chen, D.-H., Zheng, Z.-P., Jin, H.-G., Gu, Z.-G., Cai, Y.-P.: Construction of one pH-independent 3-D pillar-layer lead-organic framework containing tetrazole-1-acetic acid. Inorg. Chem. Commun. 27, 22–25 (2013)

    Article  Google Scholar 

  92. Sun, Y.-X., Sun, W.-Y.: Influence of temperature on metal-organic frameworks. Chin. Chem. Lett. 25, 823–828 (2014)

    Article  CAS  Google Scholar 

  93. Seetharaj, R., Vandana, P., Arya, P., Mathew, S.: Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem. 12, 295–315 (2019)

    Article  CAS  Google Scholar 

  94. Hu, X., Wang, C., Wang, L., Liu, Z., Wu, L., Zhang, G., Yu, L., Ren, X., York, P., Sun, L.: Nanoporous CD-MOF particles with uniform and inhalable size for pulmonary delivery of budesonide. Int. J. Pharm. 564, 153–161 (2019)

    Article  CAS  PubMed  Google Scholar 

  95. Abazari, R., Mahjoub, A.R., Slawin, A.M., Carpenter-Warren, C.L.: Morphology-and size-controlled synthesis of a metal-organic framework under ultrasound irradiation: an efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution. Ultrason. Sonochem. 42, 594–608 (2018)

    Article  CAS  PubMed  Google Scholar 

  96. Li, L., Wang, S., Chen, T., Sun, Z., Luo, J., Hong, M.: Solvent-dependent formation of Cd (II) coordination polymers based on a C 2-symmetric tricarboxylate linker. Crys. Growth Des. 12, 4109–4115 (2012)

    Article  CAS  Google Scholar 

  97. Gao, X., Cui, R., Ji, G., Liu, Z.: Size and surface controllable metal–organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale 10, 6205–6211 (2018)

    Article  CAS  PubMed  Google Scholar 

  98. Luo, L., Lv, G.-C., Wang, P., Liu, Q., Chen, K., Sun, W.-Y.: pH-Dependent cobalt (ii) frameworks with mixed 3, 3′, 5, 5′-tetra (1 H-imidazol-1-yl)-1, 1′-biphenyl and 1, 3, 5-benzenetricarboxylate ligands: synthesis, structure and sorption property. CrystEngComm 15, 9537–9543 (2013)

    Article  CAS  Google Scholar 

  99. Gupta, G., Thakur, A.: A comprehensive review on luminescent metal–organic framework detectors. Mater. Today. Proc. (2021). https://doi.org/10.1016/j.matpr.2021.09.170

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ge, Y., Yao, S., Sun, X., Yu, C., Li, G., Liu, Y.: A luminescent metal-organic framework with helical SBUs for highly effective detection of Fe3+ ions. Inorg. Chem. Comm. 93, 52–55 (2018)

    Article  CAS  Google Scholar 

  101. Guo, J., Wan, Y., Zhu, Y., Zhao, M., Tang, Z.: Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 14, 2037–2052 (2021)

    Article  CAS  Google Scholar 

  102. Schoedel, A., Rajeh, S.: Why design matters: From decorated metal-oxide clusters to functional metal-organic frameworks. Metal-Organic Framework. 1–55 (2020).

  103. Zhang, X., Chen, Z., Liu, X., Hanna, S.L., Wang, X., Taheri-Ledari, R., Maleki, A., Li, P., Farha, O.K.: Chem. Soc. Rev. 49, 7406–7427 (2020)

    Article  CAS  PubMed  Google Scholar 

  104. Kanan, S.M., Malkawi, A.: Recent advances in nanocomposite luminescent metal-organic framework sensors for detecting metal ions. Comments Inorg. Chem. 41, 1–66 (2021)

    Article  CAS  Google Scholar 

  105. Wang, S., Gong, M., Han, X., Zhao, D., Liu, J., Lu, Y., Li, C., Chen, B.: Embedding red emitters in the NbO-type metal-organic frameworks for highly sensitive luminescence thermometry over tunable temperature range. ACS Appl. Mater. Interfaces 13, 11078–11088 (2021)

    Article  CAS  PubMed  Google Scholar 

  106. Pashazadeh-Panahi, P., Belali, S., Sohrabi, H., Oroojalian, F., Hashemzaei, M., Mokhtarzadeh, A., de la Guardia, M.: Metal-organic frameworks conjugated with biomolecules as efficient platforms for development of biosensors. TrAC Trends in Analytical Chemistry. 116285 (2021).

  107. Sanati, S., Abazari, R., Albero, J., Morsali, A., García, H., Liang, Z., Zou, R.: Metal–organic framework derived bimetallic materials for electrochemical energy storage. Angew. Chem. Int. Ed. 60, 11048–11067 (2021)

    Article  CAS  Google Scholar 

  108. Kukkar, D., Vellingiri, K., Kim, K.-H., Deep, A.: Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sens. Actuators B Chem. 273, 1346–1370 (2018)

    Article  CAS  Google Scholar 

  109. Bosch, M., Zhang, M., Zhou, H.-C.: Increasing the stability of metal-organic frameworks. Adv. Chem. 2014, 1155 (2014)

    Article  Google Scholar 

  110. Ding, M., Cai, X., Jiang, H.-L.: Improving MOF stability: approaches and applications. Chem. Sci. 10, 10209–10230 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, N., Xu, J., Feng, R., Hu, T.-L., Bu, X.-H.: Governing metal–organic frameworks towards high stability. Chem. Commun. 52, 8501–8513 (2016)

    Article  CAS  Google Scholar 

  112. Chughtai, A.H., Ahmad, N., Younus, H.A., Laypkov, A., Verpoort, F.: Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 44, 6804–6849 (2015)

    Article  CAS  PubMed  Google Scholar 

  113. Soni, S., Bajpai, P. K., Arora, C.: A review on metal-organic framework: synthesis, properties and application. Charact. Appl. Nanomater. 3, (2020).

  114. Bazargan, M., Ghaemi, F., Amiri, A., Mirzaei, M.: Metal–organic framework-based sorbents in analytical sample preparation. Coord. Chem. Rev. 445, 214107 (2021)

    Article  CAS  Google Scholar 

  115. Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  CAS  Google Scholar 

  116. Kumar, S., Jain, S., Nehra, M., Dilbaghi, N., Marrazza, G., Kim, K.-H.: Green synthesis of metal–organic frameworks: as state-of-the-art review of potential environmental and medical applications Coord. Chem. Rev. 420, 213407 (2020)

    CAS  Google Scholar 

  117. Dapaah, M.F., Liu, B.: Recent advances of supercritical CO2 in green synthesis and activation of metal–organic frameworks, journal of inorganic and organometallic polymers and materials. J. Inorg. Organomet. Polym. Mater. 30, 581–595 (2020)

    Article  CAS  Google Scholar 

  118. Dašić, M., Stanković, I., Gkagkas, K.: Molecular dynamics investigation of the influence of the shape of the cation on the structure and lubrication properties of ionic liquids. Phys. Chem. Chem. Phys. 21, 4375–4386 (2019)

    Article  PubMed  Google Scholar 

  119. Jiao, L., Seow, J.Y.R., Skinner, W.S., Wang, Z.U., Jiang, H.-L.: Metal–organic frameworks: Structures and functional applications. Mater. Today. 27, 43–68 (2019)

    Article  CAS  Google Scholar 

  120. Zhang, Y., Yuan, S., Day, G., Wang, X., Yang, X., Zhou, H.-C.: Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 354, 28–45 (2018)

    Article  CAS  Google Scholar 

  121. Zhao, D., Cui, Y., Yang, Y., Qian, G.: Sensing-functional luminescent metal–organic frameworks. CrystEngComm 18, 3746–3759 (2016)

    Article  CAS  Google Scholar 

  122. Farahani, Y.D., Safarifard, V.: A luminescent metal-organic framework with pre-designed functionalized ligands as an efficient fluorescence sensing for Fe3+ ions. J. Solid State Chem. 270, 428–435 (2019)

    Article  CAS  Google Scholar 

  123. Han, X., Gu, C., Ding, Y., Yu, J., Li, K., Zhao, D., Chen, B.: Stable Eu3+/Cu2+-functionalized supramolecular Zinc (II) complexes as fluorescent probes for turn-on and ratiometric detection of hydrogen sulfide. ACS Appl. Mater. Interfaces. 13, 20371–20379 (2021)

    Article  CAS  PubMed  Google Scholar 

  124. Ding, Y., Lu, Y., Yu, K., Wang, S., Zhao, D., Chen, B.: MOF-nanocomposite mixed-matrix membrane for dual-luminescence ratiometric temperature sensing. Adv. Optic. Mater. 9, 2100945 (2021)

    Article  CAS  Google Scholar 

  125. Kumar, P., Deep, A., Kim, K.-H.: Metal organic frameworks for sensing applications. TrAC, Trends Anal. Chem. 73, 39–53 (2015)

    Article  CAS  Google Scholar 

  126. Allendorf, M.D., Bauer, C.A., Bhakta, R., Houk, R.: Luminescent metal–organic frameworks. Chem. Soc. Rev. 38, 1330–1352 (2009)

    Article  CAS  PubMed  Google Scholar 

  127. Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., Hupp, J.T.: Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)

    Article  CAS  PubMed  Google Scholar 

  128. Amiripour, F., Ghasemi, S., Azizi, S.N.: Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal–organic framework for selective detection of chloramphenicol residues in milk and honey. Food Chem. 347, 129034 (2021)

    Article  CAS  PubMed  Google Scholar 

  129. Lei, J., Qian, R., Ling, P., Cui, L., Ju, H.: Design and sensing applications of metal–organic framework composites. TrAC Trend. Anal. Chem. 58, 71–78 (2014)

    Article  CAS  Google Scholar 

  130. Huangfu, M., Wang, M., Lin, C., Wang, J., Wu, P.: Luminescent metal–organic frameworks as chemical sensors based on “mechanism–response”: a review. Dalton Transac. 50, 3429–3449 (2021)

    Article  CAS  Google Scholar 

  131. Zeng, G., Xing, S., Wang, X., Yang, Y., Ma, D., Liang, H., Gao, L., Hua, J., Li, G., Shi, Z.: 3d–4f metal–organic framework with dual luminescent centers that efficiently discriminates the isomer and homologues of small organic molecules. Inorg. Chem. 55, 1089–1095 (2016)

    Article  CAS  PubMed  Google Scholar 

  132. Pramanik, S., Zheng, C., Zhang, X., Emge, T.J., Li, J.: New microporous metal− organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J. Am. Chem. Soc. 133, 4153–4155 (2011)

    Article  CAS  PubMed  Google Scholar 

  133. Buragohain, A., Yousufuddin, M., Sarma, M., Biswas, S.: 3D luminescent amide-functionalized cadmium tetrazolate framework for selective detection of 2, 4, 6-trinitrophenol. Cryst. Growth Des. 16, 842–851 (2016)

    Article  CAS  Google Scholar 

  134. Li, Y., Zhang, S., Song, D.: A Luminescent metal–organic framework as a turn-on sensor for DMF vapor. Angew. Chem. Int. Ed. 52, 710–713 (2013)

    Article  CAS  Google Scholar 

  135. Zeng, C.-H., Meng, X.-T., Xu, S.-S., Han, L.-J., Zhong, S., Jia, M.-Y.: A polymorphic lanthanide complex as selective Co2+ sensor and luminescent timer. Sens. Actuators B Chem. 221, 127–135 (2015)

    Article  CAS  Google Scholar 

  136. Yang, M.-Q., Zhou, C.-P., Chen, Y., Li, J.-J., Zeng, C.-H., Zhong, S.: Highly sensitive and selective sensing of CH3Hg+ via oscillation effect in Eu-cluster. Sens. Actuators B Chem. 248, 589–596 (2017)

    Article  CAS  Google Scholar 

  137. Zheng, K., Liu, Z., Jiang, Y., Guo, P., Li, H., Zeng, C., Ng, S.W., Zhong, S.: Ultrahigh luminescence quantum yield lanthanide coordination polymer as a multifunctional sensor. Dalton Transac. 47, 17432–17440 (2018)

    Article  CAS  Google Scholar 

  138. Li, C., Zeng, C., Chen, Z., Jiang, Y., Yao, H., Yang, Y., Wong, W.-T.: Luminescent lanthanide metal-organic framework test strip for immediate detection of tetracycline antibiotics in water. J. Hazard. Mater. 384, 121498 (2020)

    Article  CAS  PubMed  Google Scholar 

  139. Liu, M., Li, H., Bai, L., Zheng, K., Zhao, Z., Chen, Z., Ng, S.W., Ding, L., Zeng, C.: Real-time and visual sensing devices based on pH-control assembled lanthanide-barium nano-cluster. J. Hazard. Mater. 413, 125291 (2021)

    Article  CAS  PubMed  Google Scholar 

  140. Zheng, K., Liu, Z.-Q., Huang, Y., Chen, F., Zeng, C.-H., Zhong, S., Ng, S.W.: Highly luminescent Ln-MOFs based on 1, 3-adamantanediacetic acid as bifunctional sensor. Sens. Actuators B Chem. 257, 705–713 (2018)

    Article  CAS  Google Scholar 

  141. Liu, J., Han, X., Lu, Y., Wang, S., Zhao, D., Li, C.: Isostructural single-and dual-lanthanide metal-organic frameworks based on substituent-group-modifying tetracarboxylate ligands for ratiometric temperature sensing. Inorg. Chem. 60, 4133–4143 (2021)

    Article  CAS  PubMed  Google Scholar 

  142. Dai, Y., Zhou, H., Song, X.-D., Zhang, J.-J., Hao, C., Di, L., Wang, Y.-X., Ni, J., Wang, H.-L.: Two (5, 5)-connected isomeric frameworks as highly selective and sensitive photoluminescent probes of nitroaromatics. CrystEngComm 19, 2786–2794 (2017)

    Article  CAS  Google Scholar 

  143. Xu, H., Liu, F., Cui, Y., Chen, B., Qian, G.: A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chem. Comm. 47, 3153–3155 (2011)

    Article  CAS  PubMed  Google Scholar 

  144. Xin, R., Yu, X.-Y., Gao, W.-P., Wang, N., Yang, J.-J., Qu, X.-S., Zhang, X.: Hydrothermal syntheses, crystal structures and luminescence properties of Cd (II) coordination polymers based on 2-(pyridine-2-yl)-1H-imidazole-4, 5-dicarboxylic acid. Inorg. Chem. Comm. 35, 38–41 (2013)

    Article  CAS  Google Scholar 

  145. Wang, H., Yuan, X., Zeng, G., Wu, Y., Liu, Y., Jiang, Q., Gu, S.: Three dimensional graphene based materials: synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface Sci. 221, 41–59 (2015)

    Article  CAS  PubMed  Google Scholar 

  146. Xu, W.-X., Li, J., Liu, R.-P., Zhou, W.-X., Ma, W.-Y., Zhang, F.-X.: A novel 1D linear zinc (II) coordination polymer based 2, 2′-bipyridine-4, 4′-dicarboxylic acid: synthesis, crystal structure and photoluminescence property. Inorg. Chem. Comm. 28, 12–15 (2013)

    Article  CAS  Google Scholar 

  147. Li, B., Chrzanowski, M., Zhang, Y., Ma, S.: Applications of metal-organic frameworks featuring multi-functional sites. Coord. Chem. Rev. 307, 106–129 (2016)

    Article  CAS  Google Scholar 

  148. Gangu, K.K., Maddila, S., Mukkamala, S.B., Jonnalagadda, S.B.: A review on contemporary metal–organic framework materials. Inorg. Chim. Acta. 446, 61–74 (2016)

    Article  CAS  Google Scholar 

  149. Lan, A., Li, K., Wu, H., Olson, D.H., Emge, T.J., Ki, W., Hong, M., Li, J.: A luminescent microporous metal–organic framework for the fast and reversible detection of high explosives. Angew. Chem. Int. Ed. 48, 2334–2338 (2009)

    Article  CAS  Google Scholar 

  150. Wu, P., Wang, J., He, C., Zhang, X., Wang, Y., Liu, T., Duan, C.: Luminescent metalorganic frameworks for selectively sensing nitric oxide in an aqueous solution and in living cells. Adv. Funct. Mater. 22, 1698–1703 (2012)

    Article  CAS  Google Scholar 

  151. Yang, W., Feng, J., Song, S., Zhang, H.: Microwave-assisted modular fabrication of nanoscale luminescent metal-organic framework for molecular sensing. ChemPhysChem 13, 2734–2738 (2012)

    Article  CAS  PubMed  Google Scholar 

  152. Wang, H., Yang, W., Sun, Z.M.: Mixed-ligand Zn-MOFs for highly luminescent sensing of nitro compounds. Chem. Asian J. 8, 982–989 (2013)

    Article  CAS  PubMed  Google Scholar 

  153. Kim, T.K., Lee, J.H., Moon, D., Moon, H.R.: Luminescent Li-based metal–organic framework tailored for the selective detection of explosive nitroaromatic compounds: direct observation of interaction sites. Inorg. Chem. 52, 589–595 (2012)

    Article  PubMed  Google Scholar 

  154. Li, H., Shi, W., Zhao, K., Niu, Z., Li, H., Cheng, P.: Highly selective sorption and luminescent sensing of small molecules demonstrated in a multifunctional lanthanide microporous metal–organic framework containing 1D honeycomb-type channels. Chem. Eur. J. 19, 3358–3365 (2013)

    Article  CAS  PubMed  Google Scholar 

  155. Lee, J.H., Jaworski, J., Jung, J.H.: Luminescent metal–organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives. Nanoscale 5, 8533–8540 (2013)

    Article  CAS  PubMed  Google Scholar 

  156. Zhou, J.-M., Shi, W., Xu, N., Cheng, P.: Highly selective luminescent sensing of fluoride and organic small-molecule pollutants based on novel lanthanide metal–organic frameworks. Inorg Chem. 52, 8082–8090 (2013)

    Article  CAS  PubMed  Google Scholar 

  157. Xiao, J.-D., Qiu, L.-G., Ke, F., Yuan, Y.-P., Xu, G.-S., Wang, Y.-M., Jiang, X.: Rapid synthesis of nanoscale terbium-based metal–organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. J. Mater. Chem. A. 1, 8745–8752 (2013)

    Article  CAS  Google Scholar 

  158. Wang, J., Zhang, L., Bao, L., Zhou, L., Liu, Y., Wu, P.: A novel dual-emitting luminescent metal-organic framework for naked-eye and microgram detection of picric acid. Dyes Pigm. 150, 301–305 (2018)

    Article  CAS  Google Scholar 

  159. Nagarkar, S.S., Joarder, B., Chaudhari, A.K., Mukherjee, S., Ghosh, S.K.: Highly selective detection of nitro explosives by a luminescent metal–organic framework. Angew. Chem. Int. Ed. 52, 2881–2885 (2013)

    Article  CAS  Google Scholar 

  160. Tian, D., Li, Y., Chen, R.-Y., Chang, Z., Wang, G.-Y., Bu, X.-H.: A luminescent metal–organic framework demonstrating ideal detection ability for nitroaromatic explosives. J. Mater. Chem. A. 2, 1465–1470 (2014)

    Article  CAS  Google Scholar 

  161. Song, X.Z., Song, S.Y., Zhao, S.N., Hao, Z.M., Zhu, M., Meng, X., Wu, L.L., Zhang, H.J.: Single-Crystal-to-single-crystal transformation of a europium (III) metal–organic framework producing a multi-responsive luminescent sensor. Adv. Funct. Mater. 24, 4034–4041 (2014)

    Article  CAS  Google Scholar 

  162. He, Y.-C., Zhang, H.-M., Liu, Y.-Y., Zhai, Q.-Y., Shen, Q.-T., Song, S.-Y., Ma, J.-F.: Luminescent anionic metal–organic framework with potential nitrobenzene sensing. Cryst. Growth Des. 14, 3174–3178 (2014)

    Article  CAS  Google Scholar 

  163. Wang, W., Yang, J., Wang, R., Zhang, L., Yu, J., Sun, D.: Luminescent terbium-organic framework exhibiting selective sensing of nitroaromatic compounds (NACs). Cryst. Growth Des. 15, 2589–2592 (2015)

    Article  CAS  Google Scholar 

  164. Dou, Z., Yu, J., Cui, Y., Yang, Y., Wang, Z., Yang, D., Qian, G.: Luminescent metal–organic framework films as highly sensitive and fast-response oxygen sensors. J. Am. Chem. Soc. 136, 5527–5530 (2014)

    Article  CAS  PubMed  Google Scholar 

  165. Liu, X.-G., Wang, H., Chen, B., Zou, Y., Gu, Z.-G., Zhao, Z., Shen, L.: A luminescent metal–organic framework constructed using a tetraphenylethene-based ligand for sensing volatile organic compounds. Chem. Commun. 51, 1677–1680 (2015)

    Article  CAS  Google Scholar 

  166. Xu, X., Guo, Y., Wang, X., Li, W., Qi, P., Wang, Z., Wang, X., Gunasekaran, S., Wang, Q.: Sensitive detection of pesticides by a highly luminescent metal-organic framework. Sens. Actuators B Chem. 260, 339–345 (2018)

    Article  CAS  Google Scholar 

  167. Liu, J., Hou, J.-X., Gao, J.-P., Liu, J.-M., Jing, X., Li, L.-J., Du, J.-L.: Stable Cd (II)-MOF as a fluorescent sensor for efficient detection of uranyl ions. Mater. Lett. 241, 184–186 (2019)

    Article  CAS  Google Scholar 

  168. Guo, F.: A novel metal-organic framework based on mixed ligands as a highly-selective luminescent sensor for Cr2O72− and nitroaromatic compounds. Inorg. Chem. Comm. 102, 108–112 (2019)

    Article  CAS  Google Scholar 

  169. Lin, M.:A bi-functional 3D PbII–organic framework for Knoevenagel condensation reaction and highly selective luminescent sensing of Cr2O72−. Inorg. Chem. Comm. (2019).

  170. He, N., Gao, M., Shen, D., Li, H., Han, Z., Zhao, P.: Rapid visual detection of nitroaromatic explosives using a luminescent europium-organic framework material. Forensic Sci Int. 297, 1–7 (2019)

    Article  CAS  PubMed  Google Scholar 

  171. Fu, Y., Chen, H., Guo, R., Huang, Y., Toroghinejad, M.R.: Extraordinary strength-ductility in gradient amorphous structured Zr-based alloy. J. Alloys Compd. 888, 161507 (2021)

    Article  CAS  Google Scholar 

  172. Ye, Y., Liu, H., Li, Y., Zhuang, Q., Liu, P., Gu, J.: One-pot doping platinum porphyrin recognition centers in Zr-based MOFs for ratiometric luminescent monitoring of nitric oxide in living cells. Talanta 200, 472–479 (2019)

    Article  CAS  PubMed  Google Scholar 

  173. Li, C., Zhang, F., Li, X., Zhang, G., Yang, Y.: A luminescent Ln-MOF thin film for highly selective detection of nitroimidazoles in aqueous solutions based on inner filter effect. J. Lumin. 205, 23–29 (2019)

    Article  CAS  Google Scholar 

  174. Zhou, Y., Yang, Q., Zhang, D., Gan, N., Li, Q., Cuan, J.: Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sens. Actuators B Chem. 262, 137–143 (2018)

    Article  CAS  Google Scholar 

  175. Chen, L., Liu, D., Zheng, L., Yi, S., He, H.: A structure-dependent ratiometric fluorescence sensor based on metal-organic framework for detection of 2, 6-pyridinedicarboxylic acid. Anal. Bioanal. Chem. 413, 4227–4236 (2021)

    Article  CAS  PubMed  Google Scholar 

  176. Wang, G.-D., Li, Y.-Z., Shi, W.-J., Zhang, B., Hou, L., Wang, Y.-Y.: A robust cluster-based Eu-MOF as multi-functional fluorescence sensor for detection of antibiotics and pesticides in water. Sens. Actuators B Chem. 331, 129377 (2021)

    Article  CAS  Google Scholar 

  177. Xu, H., Gao, J., Qian, X., Wang, J., He, H., Cui, Y., Yang, Y., Wang, Z., Qian, G.: Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of F 3+. J. Mater. Chem. A. 4, 10900–10905 (2016)

    Article  CAS  Google Scholar 

  178. Sun, W., Wang, J., Zhang, G., Liu, Z.: A luminescent terbium MOF containing uncoordinated carboxyl groups exhibits highly selective sensing for Fe3+ ions. RSC Adv. 4, 55252–55255 (2014)

    Article  CAS  Google Scholar 

  179. Li, J.-X., Qin, Z.-B., Li, Y.-H., Cui, G.-H.: Two luminescent Cd (II)-MOFs based on bis (benzimidazole) and aromatic dicarboxylate ligands as chemosensor for highly selective sensing of Fe3+. Polyhedron 151, 530–536 (2018)

    Article  CAS  Google Scholar 

  180. Salomon, W., Dolbecq, A., Roch-Marchal, C., Paille, G., Dessapt, R., Mialane, P., Serier-Brault, H.: A multifunctional dual-luminescent polyoxometalate@ metal-organic framework EuW10@ UiO-67 composite as chemical probe and temperature sensor. Front. Chem. 6, (2018).

  181. Su, Y., Zhang, D., Jia, P., Gao, W., Li, Y., He, J., Wang, C., Zheng, X., Yang, Q., Yang, C.: Bonded-luminescent foam based on europium complexes as a reversible copper (II) ions sensor in pure water. Eur. Polym. J. 112, 461–465 (2019)

    Article  CAS  Google Scholar 

  182. Wang, S.-T., Zheng, X., Zhang, S.-H., Li, G., Xiao, Y.: A study of GUPT-2, a water-stable zinc-based metal–organic framework as a highly selective and sensitive fluorescent sensor in the detection of Al3+ and Fe3+ ions. CrystEngComm 23, 4059–4068 (2021)

    Article  CAS  Google Scholar 

  183. Tang, J., Huang, M., Liang, Z., Yang, Y., Wen, Y., Zhu, Q.-L., Wu, X.-T.: Water-Stable two-dimensional metal–organic framework nanostructures for Fe3+ ions detection. Cryst. Growth Des. 21, 5275–5282 (2021)

    Article  CAS  Google Scholar 

  184. Yu, H., Liu, Q., Li, J., Su, Z.-M., Li, X., Wang, X., Sun, J., Zhou, C., Hu, X.: A dual-emitting mixed-lanthanide MOF with high water-stability for ratiometric fluorescence sensing of Fe3+ and ascorbic acid. J. Mater. Chem. C. 9, 562–568 (2021)

    Article  CAS  Google Scholar 

  185. Yu, Y., Pan, D., Qiu, S., Ren, L., Huang, S., Liu, R., Wang, L., Wang, H.: Polyphenylene sulfide paper-based sensor modified by Eu-MOF for efficient detection of Fe3+. React Funct Polym. 165, 104954 (2021)

    Article  CAS  Google Scholar 

  186. Li, Y.-W., Li, J., Wan, X.-Y., Sheng, D.-F., Yan, H., Zhang, S.-S., Ma, H.-Y., Wang, S.-N., Li, D.-C., Gao, Z.-Y.: Nanocage-based N-rich metal–organic framework for luminescence sensing toward Fe3+ and Cu2+ Ions. Inorg. Chem. 60, 671–681 (2021)

    Article  CAS  PubMed  Google Scholar 

  187. Wang, G.-Q., Huang, X.-F., Wu, C.-H., Shen, Y., Cai, S.-L., Fan, J., Zhang, W.-G., Zheng, S.-R.: A hydrolytically stable hydrogen-bonded inorganic-organic network as a luminescence turn-on sensor for the detection of Bi3+ and Fe3+ cations in water. Polyhedron 205, 115284 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin O. Patil.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nangare, S.N., Patil, A.G., Chandankar, S.M. et al. Nanostructured metal–organic framework-based luminescent sensor for chemical sensing: current challenges and future prospects. J Nanostruct Chem 13, 197–242 (2023). https://doi.org/10.1007/s40097-022-00479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00479-0

Keywords

Navigation