Skip to main content
Log in

Novel eco-friendly acacia gum-grafted-polyamidoxime@copper ferrite nanocatalyst for synthesis of pyrazolopyridine derivatives

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

A novel environmentally friendly polymer-based catalytic system was fabricated for the synthesis of biologically active pyrazolopyridine derivatives. Nanocatalyst was fabricated in three-step including (I) synthesis of the copper ferrite magnetic nanoparticles (MNPs) via co-precipitation method, (II) graft copolymerization of acrylonitrile onto acacia gum (AG) backbone using ammonium persulfate (APS) as an initiator, and N, N'-methylene bisacrylamide (MBA) as a crosslinker in combination with as-prepared copper ferrite, and (III) modification reaction of the as-prepared hydrogel using hydroxylamine hydrochloride reagent to achieve acacia gum-grafted- polyamidoxime/CuFe2O4 (AG-g-PAO/CuFe2O4) hydrogel nanocatalyst. The fabricated hydrogel nanocatalyst was well characterized by different techniques. The results revealed that the fabricated hydrogel nanocatalyst exhibited high thermal stability with ~ 40% char yield at 800 °C. The existence of many acidic and basic sites such as hydroxyl, carboxylic acid, amidoxime, amide, as well as Cu2+ in three-dimensional cross-linked structure caused it was showed a great catalytic performance in the pyrazolopyridine derivatives synthesis. The various corresponding products were synthesized in remarkable yields (90–97%) without difficult work-up procedure in short reaction times (15–40 min). Furthermore, the hydrogel catalyst showed superparamagnetic behavior, so it could be magnetically collected from the reaction mixture and recycled for at least five successive cycles without considerable loss of activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu, C.-C., Chen, D.-H.: Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst. Nanoscale Res. Lett. 7(1), 1–7 (2012)

    Article  Google Scholar 

  2. Khalil, K.D., Al-Matar, H.M.: Chitosan based heterogeneous catalyses: Chitosan-grafted-poly (4-vinylpyridne) as an efficient catalyst for michael additions and alkylpyridazinyl carbonitrile oxidation. Molecules 18(5), 5288–5305 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baran, T., Yılmaz Baran, N., Menteş, A.: A new air and moisture stable robust bio-polymer based palladium catalyst for highly efficient synthesis of biaryl compounds. Appl. Organomet. Chem. 32(2), e4076 (2018)

    Article  Google Scholar 

  4. Kandathil, V., Veetil, A.K., Patra, A., Moolakkil, A., Kempasiddaiah, M., Somappa, S.B., Rout, C.S., Patil, S.A.: A green and sustainable cellulosic-carbon-shielded Pd–MNP hybrid material for catalysis and energy storage applications. J. Nanostructure Chem. 11, 395–407 (2021)

    Article  CAS  Google Scholar 

  5. Kumari, S., Yadav, D., Sharma, S.K.: Cu (II) Schiff base complex grafted guar gum: Catalyst for benzophenone derivatives synthesis. Appl. Catal. A: Gen. 601, 117529 (2020)

    Article  Google Scholar 

  6. Maleki, A., Hassanzadeh-Afruzi, F., Varzi, Z., Esmaeili, M.S.: Magnetic dextrin nanobiomaterial: an organic-inorganic hybrid catalyst for the synthesis of biologically active polyhydroquinoline derivatives by asymmetric Hantzsch reaction. Mater. Sci. Eng. C 109, 110502 (2020)

    Article  CAS  Google Scholar 

  7. Maleki, A., Varzi, Z., Hassanzadeh-Afruzi, F.: Preparation and characterization of an eco-friendly ZnFe2O4@ alginic acid nanocomposite catalyst and its application in the synthesis of 2-amino-3-cyano-4H-pyran derivatives. Polyhedron 171, 193–202 (2019)

    Article  CAS  Google Scholar 

  8. Kamalzare, P., Mirza, B., Soleimani-Amiri, S.: Chitosan magnetic nanocomposite: a magnetically reusable nanocatalyst for green synthesis of Hantzsch 1,4-dihydropyridines under solvent-free conditions. J. Nanostructure Chem. 11(2), 229–243 (2021)

    Article  CAS  Google Scholar 

  9. Dohendou, M., Pakzad, K., Nezafat, Z., Nasrollahzadeh, M., Dekamin, M.G.: Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano) catalysts for the Heck coupling reactions: A review. Int. J. Biol. Macromol. 192, 771–819 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. Wang, J., Feng, T., Chen, J., Ramalingam, V., Li, Z., Kabtamu, D.M., He, J.-H., Fang, X.: Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 86, 106088 (2021)

    Article  CAS  Google Scholar 

  11. Han, S., Hu, L., Liang, Z., Wageh, S., Al-Ghamdi, A.A., Chen, Y., Fang, X.: One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 24(36), 5719–5727 (2014)

    Article  CAS  Google Scholar 

  12. Zheng, L., Han, S., Liu, H., Yu, P., Fang, X.: Hierarchical MoS2 nanosheet@ TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12(11), 1527–1536 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. Liu, S., Zheng, L., Yu, P., Han, S., Fang, X.: Novel composites of α-Fe2O3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances. Adv. Funct. Mater. 26(19), 3331–3339 (2016)

    Article  CAS  Google Scholar 

  14. Hassanzadeh-Afruzi, F.: Physical aspects of micro and nanoscale composites. In: Maleki, A. (ed.) Heterogeneous micro and nanoscale composites for the catalysis of organic reactions, pp. 69–86. Elsevier (2022)

    Chapter  Google Scholar 

  15. Hassanzadeh-Afruzi, F.: Chemistry of micro and nanoscale composites. In: Maleki, A. (ed.) Heterogeneous micro and nanoscale composites for the catalysis of organic reactions, pp. 53–68. Elsevier (2022)

    Chapter  Google Scholar 

  16. Rahmati, M., Fazaeli, R., Saravani, M.G., Ghiasi, R.: Cu–curcumin/MCM-41 as an efficient catalyst for in situ conversion of carbazole to fuel oxygenates: a DOE approach. J. Nanostructure Chem. (2021). https://doi.org/10.1007/s40097-021-00417-6

    Article  Google Scholar 

  17. Luo, F., Zeng, D., Wang, W., Yang, Y., Zafar, A., Wu, Z., Tian, Y., Huang, Y., Hasan, M., Shu, X.: Bio-conditioning poly-dihydromyricetin zinc nanoparticles synthesis for advanced catalytic degradation and microbial inhibition. J. Nanostructure Chem. (2021). https://doi.org/10.1007/s40097-021-00443-4

    Article  Google Scholar 

  18. Mutlu, R.N., Yabalak, E., Acar, A.N., Gizir, A.M.: Green synthesis of Fe (II, III) oxides nanoparticles in the subcritical water medium and evaluation of their catalytic performance in the oxidation of metoprolol. J. Nanostructure Chem. (2021). https://doi.org/10.1007/s40097-021-00403-y

    Article  Google Scholar 

  19. Feng, H., Dong, C.-M.: Synthesis and characterization of phthaloyl-chitosan-g-poly (L-lactide) using an organic catalyst. Carbohydr. Polym. 70(3), 258–264 (2007)

    Article  CAS  Google Scholar 

  20. El Assimi, T., Blažic, R., El Kadib, A., Raihane, M., Beniazza, R., Luinstra, G.A., Vidović, E., Lahcini, M.: Synthesis of poly (ε-caprolactone)-grafted guar gum by surface-initiated ring-opening polymerization. Carbohydr. Polym. 220, 95–102 (2019)

    Article  PubMed  Google Scholar 

  21. Manawi, Y., McKay, G., Ismail, N., Fard, A.K., Kochkodan, V., Atieh, M.A.: Enhancing lead removal from water by complex-assisted filtration with acacia gum. Chem. Eng. J. 352, 828–836 (2018)

    Article  CAS  Google Scholar 

  22. Abdel-Bary, E., Elbedwehy, A.: Graft copolymerization of polyacrylic acid onto Acacia gum using erythrosine–thiourea as a visible light photoinitiator: Application for dye removal. Polym. Bull. 75(8), 3325–3340 (2018)

    Article  CAS  Google Scholar 

  23. Priya, D.D., Khan, M.M.R., Roopan, S.M.: Fabricating a g-C3N4/CuO heterostructure with improved catalytic activity on the multicomponent synthesis of pyrimidoindazoles. J. Nanostructure Chem. 10(4), 289–308 (2020)

    Article  CAS  Google Scholar 

  24. Bahrami, S., Hassanzadeh-Afruzi, F., Maleki, A.: Synthesis and characterization of a novel and green rod-like magnetic ZnS/CuFe2O4/agar organometallic hybrid catalyst for the synthesis of biologically-active 2-amino-tetrahydro-4H-chromene-3-carbonitrile derivatives. Appl. Organomet. Chem. 34(11), e5949 (2020)

    Article  CAS  Google Scholar 

  25. Hassanzadeh-Afruzi, F., Dogari, H., Esmailzadeh, F., Maleki, A.: Magnetized melamine‐modified polyacrylonitrile (PAN@ melamine/Fe3O4) organometallic nanomaterial: Preparation, characterization, and application as a multifunctional catalyst in the synthesis of bioactive dihydropyrano [2, 3‐c] pyrazole and 2‐amino‐3‐cyano 4H‐pyran derivatives. Appl. Organomet. Chem. 35(10), e6363 (2021)

    Article  CAS  Google Scholar 

  26. Azizi, S., Soleymani, J., Hasanzadeh, M.: Iron oxide magnetic nanoparticles supported on amino propyl-functionalized KCC-1 as robust recyclable catalyst for one pot and green synthesis of tetrahydrodipyrazolopyridines and cytotoxicity evaluation. Appl. Organomet. Chem. 34(3), 5440 (2020)

    Article  Google Scholar 

  27. Manjunatha, U.H., Vinayak, S., Zambriski, J.A., Chao, A.T., Sy, T., Noble, C.G., Bonamy, G.M., Kondreddi, R.R., Zou, B., Gedeck, P.: A Cryptosporidium PI (4) K inhibitor is a drug candidate for cryptosporidiosis. Nature 546(7658), 376–380 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salem, M.S., Ali, M.A.M.: Novel pyrazolo [3, 4-b] pyridine derivatives: synthesis, characterization, antimicrobial and antiproliferative profile. Biol. Pharm. Bull. 39(4), 473–483 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. Sindhu, J., Singh, H., Khurana, J., Bhardwaj, J.K., Saraf, P., Sharma, C.: Synthesis and biological evaluation of some functionalized 1 H-1, 2, 3-triazole tethered pyrazolo [3, 4-b] pyridin-6 (7 H)-ones as antimicrobial and apoptosis inducing agents. Med. Chem. Res. 25(9), 1813–1830 (2016)

    Article  CAS  Google Scholar 

  30. Maqbool, T., Nazeer, A., Khan, M.N., Elliott, M.C., Khan, M.A., Ashraf, M., Nasrullah, M., Arshad, S., Munawar, M.A.: Pyrazolopyridines II: synthesis and antibacterial screening of 6-aryl-3-methyl-1-phenyl-1H-pyrazolo [3, 4-b] pyridine-4-carboxylic Acids. Asian J. Chem. 26(10), 2870–2872 (2014)

    Article  CAS  Google Scholar 

  31. Gudmundsson, K.S., Johns, B.A., Allen, S.H.: Pyrazolopyridines with potent activity against herpesviruses: Effects of C5 substituents on antiviral activity. Bioorg. Med. Chem. Lett. 18(3), 1157–1161 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. Quiroga, J., Villarreal, Y., Gálvez, J., Ortíz, A., Insuasty, B., Abonia, R., Raimondi, M., Zacchino, S.: Synthesis and antifungal in vitro evaluation of pyrazolo [3, 4-b] pyridines derivatives obtained by Aza-Diels–Alder reaction and microwave irradiation. Chem. Pharm. Bull. 65(2), 143–150 (2017)

    Article  CAS  Google Scholar 

  33. Chioua, M., Samadi, A., Soriano, E., Lozach, O., Meijer, L., Marco-Contelles, J.: Synthesis and biological evaluation of 3, 6-diamino-1H-pyrazolo [3, 4-b] pyridine derivatives as protein kinase inhibitors. Bioorg. Med. Chem. Lett. 19(16), 4566–4569 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. Hajizadeh, Z., Hassanzadeh-Afruzi, F., Fallah Jelodar, D., Ahghari, M., Maleki, A.: "Cu (ii) immobilized on Fe 3 O 4@ HNTs–tetrazole (CFHT) nanocomposite: synthesis, characterization, investigation of its catalytic role for the 1, 3 dipolar cycloaddition reaction, and antibacterial activity. RSC Adv. 10(44), 26467–26478 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tao, S., Gao, F., Liu, X., Sørensen, O.T.: Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mater. Sci. Eng. B 77, 172–176 (2000)

    Article  Google Scholar 

  36. Zohuriaan-Mehr, M.J., Motazedi, Z., Kabiri, K., Ershad-Langroudi, A.: New super-absorbing hydrogel hybrids from gum arabic and acrylic monomers. J Macromol Sci Pure Appl Chem. 42(12), 1655–1666 (2005)

    Article  Google Scholar 

  37. Juby, K., Dwivedi, C., Kumar, M., Kota, S., Misra, H., Bajaj, P.: Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohydr. Polym. 89(3), 906–913 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. Alang, M., Barminas, J., Aliyu, B., Osemeahon, S.: Synthesis and optimization of polyacrylamide and gum arabic graft copolymer. Int. J. Biol. Chem. sci. 5(4), 1694–1702 (2011)

    Google Scholar 

  39. Zonatto, F., Muniz, E.C., Tambourgi, E.B., Paulino, A.T.: Adsorption and controlled release of potassium, phosphate and ammonia from modified Arabic gum-based hydrogel. Int. J. Biol. Macromol. 105, 363–369 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. de Souza, A.G., Cesco, C.T., de Lima, G.F., Artifon, S.E., D.d.S. Rosa, A.T,: Paulino, Arabic gum-based composite hydrogels reinforced with eucalyptus and pinus residues for controlled phosphorus release. Int J Biol Macromol. 140, 33–42 (2019)

    Article  PubMed  Google Scholar 

  41. Surendra, B., Veerabhdraswamy, M., Anantharaju, K., Nagaswarupa, H., Prashantha, S.: Green and chemical-engineered CuFe 2 O 4: characterization, cyclic voltammetry, photocatalytic and photoluminescent investigation for multifunctional applications. J. Nanostructure Chem. 8(1), 45–59 (2018)

    Article  CAS  Google Scholar 

  42. Elbedwehy, A.M., Abou-Elanwar, A.M., Ezzat, A.O., Atta, A.M.: Super effective removal of toxic metals water pollutants using multi functionalized polyacrylonitrile and arabic gum grafts. Polymers 11(12), 1938 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rezaei, P., Rezaei, M., Meshkani, F.: Low temperature CO oxidation over mesoporous iron and copper mixed oxides nanopowders synthesized by a simple one-pot solid-state method. Process Saf. Environ. Prot. 119, 379–388 (2018)

    Article  CAS  Google Scholar 

  44. Rajput, J.K., Arora, P., Kaur, G., Kaur, M.: CuFe2O4 magnetic heterogeneous nanocatalyst: Low power sonochemical-coprecipitation preparation and applications in synthesis of 4H-chromene-3-carbonitrile scaffolds. Ultrason. Sonochem. 26, 229–240 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. Iqbal, M.J., Yaqub, N., Sepiol, B., Ismail, B.: A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4. Mater. Res. Bull. 46(11), 1837–1842 (2011)

    Article  CAS  Google Scholar 

  46. Agouriane, E., Rabi, B., Essoumhi, A., Razouk, A., Sahlaoui, M., Costa, B., Sajieddine, M.: Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by co-precipitation. J. Mater. Environ. Sci 7(11), 4116–4120 (2016)

    CAS  Google Scholar 

  47. Rahman, M.L., Fui, C.J., Sarjadi, M.S., Arshad, S.E., Musta, B., Abdullah, M.H., Sarkar, S.M., O’Reilly, E.J.: Poly (amidoxime) ligand derived from waste palm fiber for the removal of heavy metals from electroplating wastewater. Environ. Sci. Pollut. 27(27), 34541–34556 (2020)

    Article  CAS  Google Scholar 

  48. Li, J., Wang, J., Wang, W., Zhang, X.: symbiotic aerogel fibers made via in-situ gelation of aramid nanofibers with polyamidoxime for uranium extraction. Molecules 24(9), 1821 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hindi, S., Albureikan, M.O., Al-Ghamdi, A.A., Alhummiany, H., Ansari, M.S.: Synthesis, characterization and biodegradation of gum Arabic-based bioplastic membranes. Nanosci. Nanotechnol. 4(2), 32–42 (2017)

    CAS  Google Scholar 

  50. Emam, H.E.: Arabic gum as bio-synthesizer for Ag–Au bimetallic nanocomposite using seed-mediated growth technique and its biological efficacy. J. Polym. Environ. 27(1), 210–223 (2019)

    Article  CAS  Google Scholar 

  51. Nilmoung, S., Sinprachim, T., Kotutha, I., Kidkhunthod, P., Yimnirun, R., Rujirawat, S., Maensiri, S.: Electrospun carbon/CuFe2O4 composite nanofibers with improved electrochemical energy storage performanceJ. Alloys Compd. 688, 1131–1140 (2016)

    Article  CAS  Google Scholar 

  52. Maleki, A., Hajizadeh, Z., Salehi, P.: Mesoporous halloysite nanotubes modified by CuFe 2 O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci. Rep. 9(1), 1–8 (2019)

    Article  Google Scholar 

  53. Safaei-Ghomi, J., Sadeghzadeh, R., Shahbazi-Alavi, H.: A pseudo six-component process for the synthesis of tetrahydrodipyrazolo pyridines using an ionic liquid immobilized on a FeNi 3 nanocatalyst. RSC Adv. 6(40), 33676–33685 (2016)

    Article  CAS  Google Scholar 

  54. Dashteh, M., Yarie, M., Zolfigol, M.A., Khazaei, A., Makhdoomi, S.: Novel pseudopolymeric magnetic nanoparticles as a hydrogen bond catalyst for the synthesis of tetrahydrodipyrazolopyridine derivatives under mild reaction conditions. Appl. Organomet. Chem. 35(6), 6222 (2021)

    Article  Google Scholar 

  55. Verma, P., Verma, D.K., Kumar, B., Singh, A.K., Shukla, N., Srivastava, V., Rastogi, R.B.: Tetrahydropyrazolopyridines as antifriction and antiwear agents: experimental and DFT calculations. RSC Adv. 10(17), 10188–10196 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chinthaparthi, R.R., Chittiboena, V.L., Jorepalli, S., Gangireddy, C.S.R.: Green synthesis and anticancer activity of tetrahydrodipyrazolo [3, 4-b: 4′, 3′-e] pyridines catalyzed by phospho sulfonic acid. J. Heterocycl. Chem. 58(5), 1104–1116 (2021)

    Article  CAS  Google Scholar 

  57. Tamaddon, F., Arab, D.: Urease covalently immobilized on cotton-derived nanocellulose-dialdehyde for urea detection and urea-based multicomponent synthesis of tetrahydro-pyrazolopyridines in water. RSC Adv. 9(71), 41893–41902 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shahbazi-Alavi, H., Safaei-Ghomi, J., Eshteghal, F., Zahedi, S., Nazemzadeh, S.H., Alemi-Tameh, F., Tavazo, M., Basharnavaz, H., Lashkari, M.R.: Nano-CuCr2O4: an efficient catalyst for a one-pot synthesis of tetrahydrodipyrazolopyridine. J. Chem. Res. 40(6), 361–363 (2016)

    Article  CAS  Google Scholar 

  59. Safaei-Ghomi, J., Shahbazi-Alavi, H., Sadeghzadeh, R., Ziarati, A.: Synthesis of pyrazolopyridines catalyzed by nano-CdZr 4 (PO 4) 6 as a reusable catalyst. J. Chem. Res. 42(12), 8143–8156 (2016)

    CAS  Google Scholar 

  60. Salehi, N., Mirjalili, B.B.F.: Nano-ovalbumin: a green biocatalyst for biomimetic synthesis of tetrahydrodipyrazolo pyridines in water. Res. Chem. Intermed. 44(11), 7065–7077 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors thankfully acknowledge the partial support from the Research Council of the Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Maleki or Ehsan Nazarzadeh Zare.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2910 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh-Afruzi, F., Maleki, A. & Zare, E.N. Novel eco-friendly acacia gum-grafted-polyamidoxime@copper ferrite nanocatalyst for synthesis of pyrazolopyridine derivatives. J Nanostruct Chem 13, 451–462 (2023). https://doi.org/10.1007/s40097-022-00471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00471-8

Keywords

Navigation