Skip to main content

Efficient dye degradation, antimicrobial behavior and molecular docking analysis of gold (Au) and cellulose nanocrystals (CNC)-doped strontium oxide nanocomposites


Novel Au and cellulose nanocrystals (CNC)-doped SrO nanocomposites have been fabricated using simple and cost-effective chemical co-precipitation technique. Various concentrations of Au were doped into fixed amounts of CNC and SrO nanocomposites. The objective of this triplex nanocomposite was to examine the effect of incorporating dopants in SrO on the efficient elimination of organic contaminants from water and their antibacterial potential with molecular docking study. Adequate experimental conditions such as temperature, suitable volume ratio of reactants and pH were generated during the synthesis. For comparative studies, nanocomposites were evaluated through a number of characterization tools. The structural and morphological analysis through XRD and HR-TEM revealed the cubic crystalline structure of aggregated SrO quantum dots (QDs). Furthermore, an interconnected chain-like structure of nanoclusters was observed upon CNC and Au incorporation in SrO lattice. The size of nanoclusters/nanoparticles was calculated to be approximately 30 nm which matched well with the reported literature. Reduction in crystallinity and bandgap from 4.12 eV (for pristine SrO) to 3.8 eV was observed upon co-doping with CNC and Au in SrO lattice. Furthermore, pH-based catalytic analysis of prepared nanocomposites revealed 98% dye degradation (in acidic media) against methylene blue ciprofloxacin (MBCF) dye along with good bactericidal activities against Gram-positive/negative bacteria, respectively. In silico molecular docking analysis for enzyme targets belonging to cell wall synthesis (penicillin-binding protein 4) and fatty acid synthesis (enoyl-[acyl-carrier-protein] reductase) suggested Au–CNC and Au/CNC-doped SrO nanostructures as possible inhibitors of these enzymes owing to their good binding scores and binding interactions with active site residues.

Graphic abstract

(a) Preparation of cellulose nanocrystals (CNC) by acid hydrolysis. (b) Schematic synthesis route to fabricate Au/CNC–SrO nanocomposites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Srivastav, A.L.: Chemical fertilizers and pesticides: role in groundwater contamination. Agrochem. Detect. Treat. Remediat. 2020, 143–159 (2020)

    Article  Google Scholar 

  2. 2.

    Zhao, D., Yu, Y., Chen, J.P.: Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA. Water Res. 101, 564–573 (2016)

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Mekonnen, M.M., Hoekstra, A.Y.: Sustainability: Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kummu, M., Guillaume, J.H.A., De Moel, H., Eisner, S., Flörke, M., Porkka, M., Siebert, S., Veldkamp, T.I.E., Ward, P.J.: The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 6, 1–16 (2016)

    Article  CAS  Google Scholar 

  5. 5.

    Sharma, S., Bhattacharya, A.: Drinking water contamination and treatment techniques. Appl. Water Sci. 7, 1043–1067 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    Cambié, D., Bottecchia, C., Straathof, N.J.W., Hessel, V., Noël, T.: Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 116, 10276–10341 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Abendrot, M., Chęcińska, L., Kusz, J., Lisowska, K., Zawadzka, K., Felczak, A., Kalinowska-Lis, U.: Zinc(II) complexes with amino acids for potential use in dermatology: synthesis, crystal structures, and antibacterial activity. Molecules 25, 951 (2020)

    CAS  Article  PubMed Central  Google Scholar 

  8. 8.

    Milenkovic, J., Hrenovic, J., Matijasevic, D., Niksic, M., Rajic, N.: Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ. Sci. Pollut. Res. 24, 20273–20281 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    Duffy, L.L., Osmond-McLeod, M.J., Judy, J., King, T.: Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 92, 293–300 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    El-Shafiy, H.F., Saif, M., Mashaly, M.M., Halim, S.A., Eid, M.F., Nabeel, A.I., Fouad, R.: New nano-complexes of Zn(II), Cu(II), Ni(II) and Co(II) ions; spectroscopy, thermal, structural analysis, DFT calculations and antimicrobial activity application. J. Mol. Struct. 1147, 452–461 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    Lei, J., Yao, G., Sun, Z., Wang, B., Yu, C., Zheng, S.: Fabrication of a novel antibacterial TPU nanofiber membrane containing Cu-loaded zeolite and its antibacterial activity toward Escherichia coli. J. Mater. Sci. 54, 11682–11693 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    Wadi, V.S., Jena, K.K., Halique, K., Alhassan, S.M.: Linear sulfur-nylon composites: structure, morphology, and antibacterial activity. ACS Appl. Polym. Mater. 2, 198–208 (2019)

    Article  CAS  Google Scholar 

  13. 13.

    Qais, F.A., Shafiq, A., Khan, H.M., Husain, F.M., Khan, R.A., Alenazi, B., Alsalme, A., Ahmad, I.: Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg. Chem. Appl. 2019, 4649506 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Palermo, E.F., Lienkamp, K., Gillies, E.R., Ragogna, P.J.: Antibacterial activity of polymers: discussions on the nature of amphiphilic balance. Angew. Chem. 131, 3728–3731 (2019)

    Article  Google Scholar 

  15. 15.

    Nowack, B., Krug, H.F., Height, M.: 120 years of nanosilver history: implications for policy makers. Environ. Sci. Technol. 45, 1177–1183 (2011)

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Ma, Y., Guo, Y., Shuang, Wu., Lv, Z., Zhang, Q., Ke, Y.: Titanium dioxide nanoparticles induce size-dependent cytotoxicity and genomic DNA hypomethylation in human respiratory cells. RSC Adv. 7, 23560–23572 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    Pichat, P.: A brief survey of the potential health risks of TiO2 particles and TiO2-containing photocatalytic or non-photocatalytic materials. J. Adv. Oxid. Technol. 13, 238–246 (2010)

    CAS  Google Scholar 

  18. 18.

    Mohammad-Shahadat, A., Nabi, S., Rani-Bushra, S., Raeissi, A., Umar, K., Omaish-Ansari, M.: Synthesis, characterization, photolytic degradation, electrical conductivity and applications of a nanocomposite adsorbent for the treatment of pollutants. RSC Adv. 2, 7207–7220 (2012)

    Article  CAS  Google Scholar 

  19. 19.

    Li, T., Abdelhaleem, A., Chu, W., Pu, S., Qi, F., Zou, J.: S-doped TiO2 photocatalyst for visible LED mediated oxone activation: kinetics and mechanism study for the photocatalytic degradation of pyrimethanil fungicide. Chem. Eng. J. 411, 128450 (2021)

    CAS  Article  Google Scholar 

  20. 20.

    Isari, A.A., Hayati, F., Kakavandi, B., Rostami, M., Motevassel, M., Dehghanifard, E.: N, Cu co-doped TiO2@functionalized SWCNT photocatalyst coupled with ultrasound and visible-light: an effective sono-photocatalysis process for pharmaceutical wastewaters treatment. Chem. Eng. J. 392, 123685 (2020)

    CAS  Article  Google Scholar 

  21. 21.

    Nabi, S.A., Shahadat, M., Bushra, R., Oves, M., Ahmed, F.: Synthesis and characterization of polyanilineZr(IV)sulphosalicylate composite and its applications (1) electrical conductivity, and (2) antimicrobial activity studies. Chem. Eng. J. 173, 706–714 (2011)

    CAS  Article  Google Scholar 

  22. 22.

    Nagajyothi, P.C., Vattikuti, S.V.P., Devarayapalli, K.C., Yoo, K., Shim, J., Sreekanth, T.V.M.: Green synthesis: photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Crit. Rev. Env. Sci. Technol. 50, 2617–2723 (2019)

    Article  CAS  Google Scholar 

  23. 23.

    Bushra, R., Shahadat, M., Ahmad, A., Nabi, S.A., Umar, K., Oves, M., Raeissi, A.S., Muneer, M.: Synthesis, characterization, antimicrobial activity and applications of polyanilineTi(IV)arsenophosphate adsorbent for the analysis of organic and inorganic pollutants. J. Hazard. Mater. 264, 481–489 (2014)

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Shahadat, M., Bushra, R., Khan, M.R., Rafatullah, M., Teng, T.T.: A comparative study for the characterization of polyaniline based nanocomposites and membrane properties. RSC Adv. 4, 20686–20692 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    Shahadat, M., Teng, T.T., Rafatullah, M., Arshad, M.: Titanium-based nanocomposite materials: a review of recent advances and perspectives. Colloids Surf. B Biointerfaces 126, 121–137 (2015)

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Cheng, X., Shang, Y., Cui, Y., Shi, R., Zhu, Y., Yang, P.: Enhanced photoelectrochemical and photocatalytic properties of anatase-TiO2(B) nanobelts decorated with CdS nanoparticles. Solid State Sci. 99, 106075 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    Gusain, R., Gupta, K., Joshi, P., Khatri, O.P.: Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv. Colloid Interface Sci. 272, 102009 (2019)

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Lu, F., Astruc, D.: Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev. 408, 213180 (2020)

    CAS  Article  Google Scholar 

  29. 29.

    Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., Ruan, R.: Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 268, 121725 (2020)

    CAS  Article  Google Scholar 

  30. 30.

    Ahuja, P., Ujjain, S.K., Kanojia, R., Attri, P.: Transition metal oxides and their composites for photocatalytic dye degradation. J. Compos. Sci. 5, 82 (2021)

    CAS  Article  Google Scholar 

  31. 31.

    Sultana, S., Rafiuddin, A., Khan, M.Z., Umar, K., Ahmed, A.S., Shahadat, M.: SnO2-SrO based nanocomposites and their photocatalytic activity for the treatment of organic pollutants. J. Mol. Struct. 1098, 393–399 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    Melinte, V., Stroea, L., Chibac-Scutaru, A.L.: Polymer nanocomposites for photocatalytic applications. Catalysts 9, 986 (2019)

    CAS  Article  Google Scholar 

  33. 33.

    Tabah, B., Nagvenkar, A.P., Perkas, N., Gedanken, A.: Solar-heated sustainable biodiesel production from waste cooking oil using a sonochemically deposited SrO catalyst on microporous activated carbon. Energy Fuels 31, 6228–6239 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    Rahman, M.M., Hussain, M.M., Asiri, A.M.: A novel approach towards hydrazine sensor development using SrO·CNT nanocomposites. RSC Adv. 6, 65338–65348 (2016)

    CAS  Article  Google Scholar 

  35. 35.

    Saska, S., Barud, H.S., Gaspar, A.M.M., Marchetto, R., Ribeiro, S.J.L., Messaddeq, Y.: Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int. J. Biomater. 2011, 175362 (2011)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Elfeky, A.S., Salem, S.S., Elzaref, A.S., Owda, M.E., Eladawy, H.A., Saeed, A.M., Awad, M.A., Abou-Zeid, R.E., Fouda, A.: Multifunctional cellulose nanocrystal /metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr. Polym. 230, 115711 (2020)

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Alavi, M., Nokhodchi, A.: An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr. Polym. 227, 115349 (2020)

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Elahi, N., Kamali, M., Baghersad, M.H.: Recent biomedical applications of gold nanoparticles: a review. Talanta 184, 537–556 (2018)

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Krishnaraj, C., Muthukumaran, P., Ramachandran, R., Balakumaran, M.D., Kalaichelvan, P.T.: Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Rep. 4, 42–49 (2014)

    CAS  Article  Google Scholar 

  40. 40.

    Lizundia, E., Goikuria, U., Vilas, J.L., Cristofaro, F., Bruni, G., Fortunati, E., Armentano, I., Visai, L., Torre, L.: Metal nanoparticles embedded in cellulose nanocrystal based films: material properties and post-use analysis. Biomacromol 19, 2618–2628 (2018)

    CAS  Article  Google Scholar 

  41. 41.

    Athar, T.: Synthesis and characterization of strontium oxide nanoparticles via wet process. Mater. Focus. 2, 450–453 (2013)

    CAS  Article  Google Scholar 

  42. 42.

    Hati, S., Patel, N., Mandal, S.: Comparative growth behaviour and biofunctionality of lactic acid bacteria during fermentation of soy milk and bovine milk. Probiotics Antimicrob. Proteins 10, 277–283 (2017)

    Article  CAS  Google Scholar 

  43. 43.

    Aqeel, M., Rashid, M., Ikram, M., Haider, A., Naz, S., Haider, J., Ul-Hamid, A., Shahzadi, A.: Photocatalytic, dye degradation, and bactericidal behavior of Cu-doped ZnO nanorods and their molecular docking analysis. Dalt. Trans. 49, 8314–8330 (2020)

    Article  Google Scholar 

  44. 44.

    Arularasu, M.V., Harb, M., Sundaram, R.: Synthesis and characterization of cellulose/TiO2 nanocomposite: Evaluation of in vitro antibacterial and in silico molecular docking studies. Carbohydr. Polym. 249, 116868 (2020)

    Article  CAS  Google Scholar 

  45. 45.

    Alexander, J.A.N., Chatterjee, S.S., Hamilton, S.M., Eltis, L.D., Chambers, H.F., Strynadka, N.C.J.: Structural and kinetic analyses of penicillin-binding protein 4 (PBP4)-mediated antibiotic resistance in Staphylococcus aureus. J. Biol. Chem. 293, 19854–19865 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Schiebel, J., Chang, A., Shah, S., Lu, Y., Liu, L., Pan, P., Hirschbeck, M.W., Tareilus, M., Eltschkner, S., Yu, W., Cummings, J.E., Knudson, S.E., Bommineni, G.R., Walker, S.G., Slayden, R.A., Sotriffer, C.A., Tonge, P.J., Kisker, C.: Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor. J. Biol. Chem. 289, 15987–16005 (2014)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Abagyan, R., Totrov, M.: Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J. Mol. Biol. 235, 983–1002 (1994)

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Apsana, G., George, P.P., Devanna, N., Yuvasravana, R.: biomimetic synthesis and antibacterial properties of strontium oxide nanoparticles using ocimum sanctum leaf extract. Asian J. Pharm. Clin. Res. 11, 384 (2018)

    Google Scholar 

  49. 49.

    Tang, C., Wang, Y., Long, Y., An, X., Shen, J., Ni, Y.: Anchoring 20(R)-Ginsenoside Rg3 onto Cellulose Nanocrystals to Increase the Hydroxyl Radical Scavenging Activity. ACS Sustain. Chem. Eng. 5, 7507–7513 (2017)

    CAS  Article  Google Scholar 

  50. 50.

    Antonakos, A., Liarokapis, E., Leventouri, T.: Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28, 3043–3054 (2007)

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Tjeerdsma, B.F., Militz, H.: Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holzals Roh-und Werkst. 63, 102–111 (2005)

    CAS  Article  Google Scholar 

  52. 52.

    Boccuzzi, F., Chiorino, A.: FTIR study of CO oxidation on Au/TiO2 at 90 K and room temperature. An insight into the nature of the reaction centers. J. Phys. Chem. B. 104, 5414–5416 (2000)

    CAS  Article  Google Scholar 

  53. 53.

    Boccuzzi, F., Chiorino, A., Tsubota, S., Haruta, M.: FTIR study of carbon monoxide oxidation and scrambling at room temperature over gold supported on ZnO and TiO2. J. Phys. Chem. 100, 3625–3631 (1996)

    CAS  Article  Google Scholar 

  54. 54.

    Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M.: Synthesis of gold nanotriangles and silver nanoparticles using aloe vera plant extract. Biotechnol. Prog. 22, 577–583 (2006)

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Yamashita, N.: Photoluminescence spectra of the Eu2+ center in SrO:Eu. J. Lumin. 59, 195–199 (1994)

    CAS  Article  Google Scholar 

  56. 56.

    Rhim, Y.R., Zhang, D., Fairbrother, D.H., Wepasnick, K.A., Livi, K.J., Bodnar, R.J., Nagle, D.C.: Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature. Carbon 48, 1012–1024 (2010)

    CAS  Article  Google Scholar 

  57. 57.

    Johansson, L.-S., Campbell, J.M.: Reproducible XPS on biopolymers: cellulose studies. Surf. Interface Anal. 36, 1018–1022 (2004)

    CAS  Article  Google Scholar 

  58. 58.

    Kameoka, S., Krajčí, M., Tsai, A.P.: Highly selective semi-hydrogenation of acetylene over porous gold with twin boundary defects. Appl. Catal. A Gen. 569, 101–109 (2019)

    CAS  Article  Google Scholar 

  59. 59.

    Liu, X., Cao, Y., Pal, B., Middey, S., Kareev, M., Choi, Y., Shafer, P., Haskel, D., Arenholz, E., Chakhalian, J.: Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics. Phys. Rev. Mater. 1, 075004 (2017)

    Article  Google Scholar 

  60. 60.

    Zainab, N., Naz, H.: Daily living functioning, social engagement and wellness of older adults. Psychol. Community Heal. 6, 93–102 (2017)

    Article  Google Scholar 

  61. 61.

    Eyasu, A., Prakash Yadav, O., Bachheti, R.K.: Photocatalytic degradation of methyl orange dye using Cr-doped ZnS nanoparticles under visible radiation. Int. J. Chem. Tech. Res. 5, 1452–1461 (2013)

    CAS  Google Scholar 

  62. 62.

    Indana, M.K., Gangapuram, B.R., Dadigala, R., Bandi, R., Guttena, V.: A novel green synthesis and characterization of silver nanoparticles using gum tragacanth and evaluation of their potential catalytic reduction activities with methylene blue and Congo red dyes. J. Anal. Sci. Technol. 7, 1–9 (2016)

    Article  CAS  Google Scholar 

Download references


The authors like to express their gratitude to HEC, Pakistan, for funding this research under project 21-1669/SRGP/R&D/HEC/2017. We are extremely appreciative of the support offered by the King Fahd University of Petroleum and Minerals’ Core Research Facilities in Dhahran, Saudi Arabia.

Author information




MI and SA carried out the entire experiment. The manuscript was written by SA and SOAA. AH, MI, and JH came up with the innovative idea for conducting the experiment. AH performed antimicrobial testing and contributed to the findings and discussion section’s data analysis. SN and JH were responsible for molecular docking. AS and IS produced the schematic diagram and evaluated and edited the manuscript’s English. The ARB deliberated on the findings and discussion. The FESEM and HR-TEM analyses were performed by AUH. The final manuscript was reviewed and approved by all writers.

Corresponding authors

Correspondence to Muhammad Ikram or Anwar Ul-Hamid.

Ethics declarations

Conflict of interest

The authors affirm that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 93 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ikram, M., Abbas, S., Haider, A. et al. Efficient dye degradation, antimicrobial behavior and molecular docking analysis of gold (Au) and cellulose nanocrystals (CNC)-doped strontium oxide nanocomposites. J Nanostruct Chem (2021).

Download citation


  • Quantum dots
  • Nanoclusters
  • Co-precipitation
  • Cellulose nanocrystals
  • Methylene Blue
  • Ciprofloxacin
  • E. coli
  • S. aureus