Skip to main content

Structural design of nanosize-metal–organic framework-based sensors for detection of organophosphorus pesticides in food and water samples: current challenges and future prospects


Organophosphorus pesticide (OPP) is regarded as an important food-chain and environmental contaminant that causes primary acute toxicity and numerous severe health issues. Therefore, the minute concentration of OPP present in food materials and environments needs to be identified before it causes any brutal harm to lives. Despite the plenty of merits of qualitative and quantitative sensing methods, the lower sensitivity, poor selectivity, detection speed, etc. towards the interest OPP are major drawbacks. Nanoparticles have attracted a lot of attention because of their unique and intriguing features, which have a variety of applications including sensor development as compared to their bulk counterparts. Recently, the structural design of nanosize-metal–organic framework (MOF) is gaining huge consideration from researchers for sensing applications owing to their versatile and tunable properties. Additionally, MOF-based sensors offer the rapid, simplistic, selective, and sensitive sensing of interest analyte. The present review provides brief information about OPPs and their toxicities. The emerging trends of structural design of nanosize-MOF including their properties have been summarized. Finally, nanosize-MOF-based fluorescent sensors, electrochemical sensors, and colorimetric sensors have been discussed with central focus on sensitivity and selectivity to OPPs. Due to the higher surface area, rich topology, ease of structural tunability and functionalization, tunable pore size, plenty of binding sites, good adsorption potential, excellent charge conductivity, and chemical stability, etc., MOF based sensors are endowed with the ability of OPPs detection upto aM. Hence, MOF as nanoporous sensors can be preferred as an excellent alternative for highly sensitive and selective recognition of OPPs in food and water samples.

Graphic abstract

Structural design of nanosize-MOF-based sensor for highly sensitive and selective detection of OPPs in food samples

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Basic information about pesticide ingredients. US Environmental Protection Agency. 2021.

  2. 2.

    International code of conduct on the distribution and use of pesticides: guidelines for quality control of pesticides, 2021. (World Health Organization).

  3. 3.

    Singh, B.K.: Organophosphorus-degrading bacteria: ecology and industrial applications. Nat. Rev. Microbiol. 7, 156–164 (2009)

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Dey, S., Pal, N.: Detrimental impact of pesticides on beneficial soil dwelling fauna. Food Sci. Rep. 1, 22–25 (2020)

    Google Scholar 

  5. 5.

    Storm, J.E.: Organophosphorus pesticides, pp. 1077–1234. Patty’s Toxicology, Hoboken (2001)

    Google Scholar 

  6. 6.

    Pundir, C., Malik, A.: Bio-sensing of organophosphorus pesticides: a review. Biosens. Bioelectron. 140, 111348 (2019)

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Rathnayake, L.K., Northrup, S.H.: Structure and mode of action of organophosphate pesticides: a computational study. Comput. Theor. Chem. 1088, 9–23 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    Vikrant, K., Tsang, D.C., Raza, N., Giri, B.S., Kukkar, D., Kim, K.-H.: Potential utility of metal–organic framework-based platform for sensing pesticides. ACS Appl. Mater. Interfaces 10, 8797–8817 (2018)

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Ssemugabo, C., Halage, A.A., Neebye, R.M., Nabankema, V., Kasule, M.M., Ssekimpi, D., Jørs, E.: Prevalence, circumstances, and management of acute pesticide poisoning in hospitals in Kampala City, Uganda. Environ. Health Insights 11, 1178630217728924 (2017)

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Gunnell, D., Eddleston, M., Phillips, M.R., Konradsen, F.: The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7, 1–15 (2007)

    Article  Google Scholar 

  11. 11.

    Eddleston, M., Buckley, N.A., Eyer, P., Dawson, A.H.: Management of acute organophosphorus pesticide poisoning. The Lancet 371, 597–607 (2008)

    CAS  Article  Google Scholar 

  12. 12.

    Worek, F., Thiermann, H.: The value of novel oximes for treatment of poisoning by organophosphorus compounds. Pharmacol. Ther. 139, 249–259 (2013)

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Jokanović, M.: Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: a review. Toxicology 410, 125–131 (2018)

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Tchounwou, P.B., Patlolla, A.K., Yedjou, C.G., Moore, P.D.: Environmental exposure and health effects associated with Malathion toxicity. Toxicity Hazard Agrochem. 51, 2145–2149 (2015)

    Google Scholar 

  15. 15.

    Lasram, M.M., Annabi, A.B., El Elj, N., Selmi, S., Kamoun, A., El-Fazaa, S., Gharbi, N.: Metabolic disorders of acute exposure to malathion in adult Wistar rats. J. Hazard Mater. 163, 1052–1055 (2009)

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Mostafalou, S., Eghbal, M.A., Nili-Ahmadabadi, A., Baeeri, M., Abdollahi, M.: Biochemical evidence on the potential role of organophosphates in hepatic glucose metabolism toward insulin resistance through inflammatory signaling and free radical pathways. Toxicol. Ind. Health 28, 840–851 (2012)

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Kalender, S., Uzun, F.G., Durak, D., Demir, F., Kalender, Y.: Malathion-induced hepatotoxicity in rats: the effects of vitamins C and E. Food Chem. Toxicol. 48, 633–638 (2010)

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Alp, H., Aytekin, I., Hatipoglu, N., Alp, A., Ogun, M.: Effects of sulforophane and curcumin on oxidative stress created by acute malathion toxicity in rats. Eur. Rev. Med. Pharmacol. Sci. 16, 144–148 (2012)

    PubMed  Google Scholar 

  19. 19.

    Nain, S., Bour, A., Chalmers, C., Smits, J.: Immunotoxicity and disease resistance in Japanese quail (Corturnix coturnix japonica) exposed to malathion. Ecotoxicology 20, 892–900 (2011)

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Bonner, M.R., Williams, B.A., Rusiecki, J.A., Blair, A., Freeman, L.E.B., Hoppin, J.A., Dosemeci, M., Lubin, J., Sandler, D.P., Alavanja, M.C.: Occupational exposure to terbufos and the incidence of cancer in the agricultural health study. Cancer Causes Control 21, 871–877 (2010)

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Mills, P.K., Yang, R.C.: Agricultural exposures and gastric cancer risk in Hispanic farm workers in California. Environ. Res. 104, 282–289 (2007)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Beane Freeman, L.E., Bonner, M.R., Blair, A., Hoppin, J.A., Sandler, D.P., Lubin, J.H., Dosemeci, M., Lynch, C.F., Knott, C., Alavanja, M.C.: Cancer incidence among male pesticide applicators in the agricultural health study cohort exposed to diazinon. Am. J. Epidemiol. 162, 1070–1079 (2005)

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Koutros, S., Lynch, C.F., Ma, X., Lee, W.J., Hoppin, J.A., Christensen, C.H., Andreotti, G., Freeman, L.B., Rusiecki, J.A., Hou, L.: Heterocyclic aromatic amine pesticide use and human cancer risk: results from the US Agricultural Health Study. Int. J. Cancer 124, 1206–1212 (2009)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Databank, H.S.: Medlars Management Section. National Library of Medicine, Bethesda (1992)

    Google Scholar 

  25. 25.

    Rafaela, P.E., Larissa, S.-F., Victor, F., Karen, G.L., Fernando, Q.C., Rodrigo, R.P., Rubens, C., Waldiceu, A.V.J., Flavia, A.G., Glaura, S.A.F.: Exposure to low doses of malathion during juvenile and peripubertal periods impairs testicular and sperm parameters in rats: role of oxidative stress and testosterone. Reprod. Toxicol. 96, 17–26 (2020)

    Article  CAS  Google Scholar 

  26. 26.

    Padungtod, C., Savitz, D.A., Overstreet, J.W., Christiani, D.C., Ryan, L.M., Xu, X.: Occupational pesticide exposure and semen quality among Chinese workers. J. Occup. Environ. Med. 42, 982–992 (2000)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Pina-Guzman, B., Solis-Heredia, M., Quintanilla-Vega, B.: Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines. Toxicol. Appl. Pharmacol. 202, 189–198 (2005)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Yavasoglu, A., Sayim, F., Uyanikgil, Y., Turgut, M., Karabay-Yavasoglu, N.Ü.: The pyrethroid cypermethrin-induced biochemical and histological alterations in rat liver. J. Health Sci. 52, 774–780 (2006)

    CAS  Article  Google Scholar 

  29. 29.

    Afshar, S., Farshid, A., Heidari, R., Ilkhanipour, M.: Histopathological changes in the liver and kidney tissues of Wistar albino rat exposed to fenitrothion. Toxicol. Ind. Health 24, 581–586 (2008)

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Schulz, H., Desi, I., Nagymajtenyi, L.: Behavioral effects of subchronic intoxication with parathion-methyl in male Wistar rats. Neurotoxicol. Teratol. 12, 125–127 (1990)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Steenland, K.: Chronic Neurological Effects of Organophosphate Pesticides. British Medical Journal Publishing Group, London (1996)

    Book  Google Scholar 

  32. 32.

    Kamanyire, R., Karalliedde, L.: Organophosphate toxicity and occupational exposure. Occup. Med. 54, 69–75 (2004)

    CAS  Article  Google Scholar 

  33. 33.

    Bureau, Accidental Deaths and Suicides in India. (2020).

  34. 34.

    Srinivas Rao, C., Venkateswarlu, V., Surender, T., Eddleston, M., Buckley, N.A.: Pesticide poisoning in south India: opportunities for prevention and improved medical management. Trop. Med. Int. Health 10, 581–588 (2005)

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    National Library of Medicine (2021).

  36. 36.

    Shrikrishna, N.S., Mahari, S., Abbineni, N., Eremin, S., Gandhi, S.: New trends in biosensor development for pesticide detection. Biosens. Agric. Recent Trends Fut. Perspect. (2021).

    Article  Google Scholar 

  37. 37.

    Nangare, S., Patil, P.: Nanoarchitectured bioconjugates and bioreceptors mediated surface plasmon resonance biosensor for in vitro diagnosis of Alzheimer’s disease: Development and future prospects. Crit. Rev. Anal. Chem. (2020).

    Article  Google Scholar 

  38. 38.

    Gong, J., Wang, L., Zhang, L.: Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite. Biosens. Bioelectron. 24, 2285–2288 (2009)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Huang, Y., Xu, J., Liu, J., Wang, X., Chen, B.: Disease-related detection with electrochemical biosensors: a review. Sensors 17, 2375 (2017)

    PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Cha, B.S., Lee, E.S., Kim, S., Kim, J.M., Hwang, S.H., Oh, S.S., Park, K.S.: Simple colorimetric detection of organophosphorus pesticides using naturally occurring extracellular vesicles. Microchem. J. 158, 105130 (2020)

    CAS  Article  Google Scholar 

  41. 41.

    Chu, S., Huang, W., Shen, F., Li, T., Li, S., Xu, W., Lv, C., Luo, Q., Liu, J.: Graphene oxide-based colorimetric detection of organophosphorus pesticides via a multi-enzyme cascade reaction. Nanoscale 12, 5829–5833 (2020)

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Liu, D.-L., Li, Y., Sun, R., Xu, J.-Y., Chen, Y., Sun, C.-Y.: Colorimetric detection of organophosphorus pesticides based on the broad-spectrum aptamer. J. Nanosci. Nanotechnol. 20, 2114–2121 (2020)

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Qiu, L., Lv, P., Zhao, C., Feng, X., Fang, G., Liu, J., Wang, S.: Electrochemical detection of organophosphorus pesticides based on amino acids conjugated nanoenzyme modified electrodes. Sens. Actuators B Chem. 286, 386–393 (2019)

    CAS  Article  Google Scholar 

  44. 44.

    Singha, D.K., Mahata, P.: Luminescent coordination polymer–fullerene composite as a highly sensitive and selective optical detector for 2, 4, 6-trinitrophenol (TNP). RSC Adv. 5, 28092–28097 (2015)

    CAS  Article  Google Scholar 

  45. 45.

    Zhao, Y., Ma, Y., Li, H., Wang, L.: Composite QDs@ MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal. Chem. 84, 386–395 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Zor, E., Morales-Narváez, E., Zamora-Gálvez, A., Bingol, H., Ersoz, M., Merkoçi, A.: Graphene quantum dots-based photoluminescent sensor: a multifunctional composite for pesticide detection. ACS Appl. Mater. Interfaces 7, 20272–20279 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Singha, D.K., Majee, P., Mandal, S., Mondal, S.K., Mahata, P.: Detection of pesticides in aqueous medium and in fruit extracts using a three-dimensional metal–organic framework: experimental and computational study. Inorg. Chem. 57, 12155–12165 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Yan, X., Song, Y., Zhu, C., Li, H., Du, D., Su, X., Lin, Y.: MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal. Chem. 90, 2618–2624 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Hu, S., Ouyang, W., Guo, L., Lin, Z., Jiang, X., Qiu, B., Chen, G.: Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens. Bioelectron. 92, 718–723 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Zhu, X., Zheng, H., Wei, X., Lin, Z., Guo, L., Qiu, B., Chen, G.: Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chem. Commun. 49, 1276–1278 (2013)

    CAS  Article  Google Scholar 

  51. 51.

    Wei, X., Lin, W., Ma, N., Luo, F., Lin, Z., Guo, L., Qiu, B., Chen, G.: Sensitive fluorescence biosensor for folate receptor based on terminal protection of small-molecule-linked DNA. Chem. Commun. 48, 6184–6186 (2012)

    CAS  Article  Google Scholar 

  52. 52.

    Li, Q., Xu, P., Gao, W., Ma, S., Zhang, G., Cao, R., Cho, J., Wang, H.L., Wu, G.: Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li–O2 batteries. Adv. Mater. 26, 1378–1386 (2014)

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Rassaei, L., Marken, F., Sillanpää, M., Amiri, M., Cirtiu, C.M., Sillanpää, M.: Nanoparticles in electrochemical sensors for environmental monitoring. TrAC Trends Analyt. Chem. 30, 1704–1715 (2011)

    CAS  Article  Google Scholar 

  54. 54.

    Rajangam, B., Daniel, D.K., Krastanov, A.I.: Progress in enzyme inhibition based detection of pesticides. Eng. Life Sci. 18, 4–19 (2018)

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Verma, N., Bhardwaj, A.: Biosensor technology for pesticides—a review. Appl. Biochem. Biotechnol. 175, 3093–3119 (2015)

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Andreescu, S., Marty, J.-L.: Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol. Eng. 23, 1–15 (2006)

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Chauhan, N., Pundir, C.S.: An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides. Electrochim Acta 67, 79–86 (2012)

    CAS  Article  Google Scholar 

  58. 58.

    Verma, N., Dhillon, S.S.: Biosensors for monitoring insecticides and herbicides—a survey. Int. J. Environ. Stud. 60, 29–43 (2003)

    CAS  Article  Google Scholar 

  59. 59.

    Marrazza, G.: Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors 4, 301–317 (2014)

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Batten, S.R., Champness, N.R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O’Keeffe, M., Suh, M.P., Reedijk, J.: Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1715–1724 (2013)

    CAS  Article  Google Scholar 

  61. 61.

    Gao, Q., Xu, J., Bu, X.-H.: Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coord. Chem. Rev. 378, 17–31 (2019)

    CAS  Article  Google Scholar 

  62. 62.

    Feng, Y., Wang, Y., Ying, Y.: Structural design of metal–organic frameworks with tunable colorimetric responses for visual sensing applications. Coord. Chem. Rev. 446, 214102 (2021)

    CAS  Article  Google Scholar 

  63. 63.

    Yang, J.: Mixed-Linker Approach toward the structural design of metal-organic frameworks, (UC Berkeley). 1–5 (2018).

  64. 64.

    Chansi, R.B., Hadwani, K., Basu, T.: Role of Metal–Organic Framework (MOF) for Pesticide Sensing, pp. 75–99. Nanoscience for Sustainable Agriculture Springer, Cham (2019).

    Book  Google Scholar 

  65. 65.

    Xu, Y., Wang, H., Li, X., Zeng, X., Du, Z., Cao, J., Jiang, W.: Metal–organic framework for the extraction and detection of pesticides from food commodities. Compr. Rev. Food Sci. Food Saf. 20, 1009–1035 (2021)

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Anam, A., Mustapha, M.B., Abdul, A., Abdul, R.: Metal-organic frameworks for heavy metal removal. Appl. Water Sci.: Remedi. Technol. (2021).

    Article  Google Scholar 

  67. 67.

    Wang, Y., Rui, M., Lu, G.: Recent applications of metal–organic frameworks in sample pretreatment. J. Sep. Sci. 41, 180–194 (2018)

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Kuthuru, S., Darpandeep, A., Justin, P., Donald, J.S., Mike, V., Adam, J.M.: Optimizing hydrogen storage in MOFs through engineering of crystal morphology and control of crystal size. J. Am. Chem. Soc. 143, 10727–10734 (2021)

    Article  CAS  Google Scholar 

  69. 69.

    Kim, H., Yang, S., Rao, S.R., Narayanan, S., Kapustin, E.A., Furukawa, H., Umans, A.S., Yaghi, O.M., Wang, E.N.: Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017)

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Joshua, N., Kezia, S., Ram, R.R.P., David, J.A., Jonathan, A.F.: Metal-organic framework nanosheets: programmable 2D materials for catalysis, sensing, electronics, and separation applications. Adv. Funct. Mater. (2021).

    Article  Google Scholar 

  71. 71.

    Khan, N.A., Jung, B.K., Hasan, Z., Jhung, S.H.: Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. J. Hazard Mater. 282, 194–200 (2015)

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Van de Voorde, B., Bueken, B., Denayer, J., De Vos, D.: Adsorptive separation on metal–organic frameworks in the liquid phase. Chem. Soc. Rev. 43, 5766–5788 (2014)

    PubMed  Article  Google Scholar 

  73. 73.

    Reed, D.A., Xiao, D.J., Gonzalez, M.I., Darago, L.E., Herm, Z.R., Grandjean, F., Long, J.R.: Reversible CO scavenging via adsorbate-dependent spin state transitions in an iron (II)–triazolate metal–organic framework. J. Am. Chem. Soc. 138, 5594–5602 (2016)

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Qiu, Q., Chen, H., Wang, Y., Ying, Y.: Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coord. Chem. Rev. 387, 60–78 (2019)

    CAS  Article  Google Scholar 

  75. 75.

    Tahir, R., Komal, R., Muhammad, B., Hafiz, M.N.I.: Metal-organic framework-based engineered materials- fundamentals and applications. Molecules 25, 1598 (2020).

    CAS  Article  Google Scholar 

  76. 76.

    Kumar, P., Deep, A., Kim, K.-H.: Metal organic frameworks for sensing applications. TrAC Trends Anal. Chem. 73, 39–53 (2015)

    CAS  Article  Google Scholar 

  77. 77.

    Hu, Z., Deibert, B.J., Li, J.: Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014)

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Li, C., Qiu, W., Long, W., Deng, F., Bai, G., Zhang, G., Zi, X., He, H.: Synthesis of porphyrin@ MOFs type catalysts through “one-pot” self-assembly. J. Mol. Catal. A Chem. 393, 166–170 (2014)

    CAS  Article  Google Scholar 

  79. 79.

    Qi, Y., Luo, F., Che, Y., Zheng, J.: Hydrothermal synthesis of metal− organic frameworks based on aromatic polycarboxylate and flexible bis (imidazole) ligands. Cryst. Growth Des. 8, 606–611 (2008)

    CAS  Article  Google Scholar 

  80. 80.

    Park, S.-E., Chang, J.-S., Hwang, Y.K., Kim, D.S., Jhung, S.H., Hwang, J.S.: Supramolecular interactions and morphology control in microwave synthesis of nanoporous materials. Catal. Surv. Asia 8, 91–110 (2004)

    CAS  Article  Google Scholar 

  81. 81.

    Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., Pastre, J.: Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)

    CAS  Article  Google Scholar 

  82. 82.

    Fernandez-Bertran, J.F.: Mechanochemistry: an overview. Pure Appl. Chem. 71, 581–586 (1999)

    CAS  Article  Google Scholar 

  83. 83.

    Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Gedanken, A.: Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochem. 11, 47–55 (2004)

    CAS  Article  Google Scholar 

  85. 85.

    Mansouriieh, N., Sohrabi, M.R., Khosravi, M.: Optimization of profenofos organophosphorus pesticide degradation by zero-valent bimetallic nanoparticles using response surface methodology. Arab. J. Chem. 12, 2524–2532 (2019)

    CAS  Article  Google Scholar 

  86. 86.

    Li, G., Xia, L., Dong, J., Chen, Y., Li, Y.: Metal-organic frameworks. Solid-Phase Extraction (Handbooks in Separation Science). Elsevier, pp 285–309 (2020).

  87. 87.

    Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M.: The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Li, W.-K., Shi, Y.-P.: Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. TrAc Trends. Anal. Chem. 118, 652–665 (2019)

    CAS  Article  Google Scholar 

  89. 89.

    DeCoste, J.B., Peterson, G.W.: Metal–organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 5695–5727 (2014)

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Maya, F., Cabello, C.P., Frizzarin, R.M., Estela, J.M., Palomino, G.T., Cerdà, V.: Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC Trends Anal. Chem. 90, 142–152 (2017)

    CAS  Article  Google Scholar 

  91. 91.

    Ebrahimi, A., Mansournia, M.: Zeolitic imidazolate framework-7: Novel ammonia atmosphere-assisted synthesis, thermal and chemical durability, phase reversibility and potential as highly efficient nanophotocatalyst. Chem. Phys. 511, 33–45 (2018)

    CAS  Article  Google Scholar 

  92. 92.

    Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    CAS  Article  Google Scholar 

  93. 93.

    Wang, L., He, K., Quan, H., Wang, X., Wang, Q., Xu, X.: A luminescent method for detection of parathion based on zinc incorporated metal-organic framework. Microchem. J. 153, 104441 (2020)

    CAS  Article  Google Scholar 

  94. 94.

    Yang, L., Liu, Y.-L., Liu, C.-G., Ye, F., Fu, Y.: A luminescent sensor based on a new Cd-MOF for nitro explosives and organophosphorus pesticides detection. Inorg. Chem. Commun. 122, 108272 (2020)

    CAS  Article  Google Scholar 

  95. 95.

    Wei, W., Zhang, K., Wang, X.-T., Du, S.-W.: Construction of a highly stable lanthanide metal-organic framework for effective detection of aryl-organophosphorus flame retardants in simulated wastewater and fruit juices. Inorg. Chim. Acta 511, 119840 (2020)

    CAS  Article  Google Scholar 

  96. 96.

    He, K., Li, Z., Wang, L., Fu, Y., Quan, H., Li, Y., Wang, X., Gunasekaran, S., Xu, X.: A water-stable luminescent metal–organic framework for rapid and visible sensing of organophosphorus pesticides. ACS Appl. Mater. Interfaces 11, 26250–26260 (2019)

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Mehta, J., Dhaka, S., Paul, A.K., Dayananda, S., Deep, A.: Organophosphate hydrolase conjugated UiO-66-NH2 MOF based highly sensitive optical detection of methyl parathion. Environ. Res. 174, 46–53 (2019)

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Xu, X., Guo, Y., Wang, X., Li, W., Qi, P., Wang, Z., Wang, X., Gunasekaran, S., Wang, Q.: Sensitive detection of pesticides by a highly luminescent metal-organic framework. Sens. Actuators B Chem. 260, 339–345 (2018)

    CAS  Article  Google Scholar 

  99. 99.

    Nagabooshanam, S., Sharma, S., Roy, S., Mathur, A., Krishnamurthy, S., Bharadwaj, L.M.: Development of field deployable sensor for detection of pesticide from food chain. IEEE Sens. J. (2020).

    Article  Google Scholar 

  100. 100.

    Ma, B., Cheong, L.-Z., Weng, X., Tan, C.-P., Shen, C.: Lipase@ ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochim. Acta 283, 509–516 (2018)

    CAS  Article  Google Scholar 

  101. 101.

    Bagheri, N., Khataee, A., Hassanzadeh, J., Habibi, B.: Sensitive biosensing of organophosphate pesticides using enzyme mimics of magnetic ZIF-8. Spectrochim. Acta A Mol. Biomol. Spectrosc. 209, 118–125 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Liu, Y., Xie, X.-Y., Cheng, C., Shao, Z.-S., Wang, H.-S.: Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms. J. Mater. Chem. C 7, 10743–10763 (2019)

    CAS  Article  Google Scholar 

  103. 103.

    Yu, M.-H., Hu, T.-L., Bu, X.-H.: A metal–organic framework as a “turn on” fluorescent sensor for aluminum ions. Inorg. Chem. Front. 4, 256–260 (2017)

    CAS  Article  Google Scholar 

  104. 104.

    Ovens, J.S., Leznoff, D.B.: Raman detected sensing of volatile organic compounds by vapochromic Cu [AuX2 (CN) 2] 2 (X= Cl, Br) coordination polymer materials. Chem. Mater. 27, 1465–1478 (2015)

    CAS  Article  Google Scholar 

  105. 105.

    Guo, Y., Feng, X., Han, T., Wang, S., Lin, Z., Dong, Y., Wang, B.: Tuning the luminescence of metal–organic frameworks for detection of energetic heterocyclic compounds. J. Am. Chem. Soc. 136, 15485–15488 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Khatua, S., Biswas, P.: Flexible luminescent MOF: trapping of less stable conformation of rotational isomers, in situ guest-responsive turn-off and turn-on luminescence and mechanistic study. ACS Appl. Mater. Interfaces 12, 22335–22346 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Yang, J., Ni, W., Ruan, B., Tsai, L.-C., Ma, N., Shi, D., Jiang, T., Tsai, F.-C.: Design and synthesis of fluorescence sensing metal-organic frameworks. ECS J. Solid State Sci. Technol. 10, 056003 (2021)

    CAS  Article  Google Scholar 

  108. 108.

    Sharma, S., Ghosh, S.K.: Metal–organic framework-based selective sensing of biothiols via chemidosimetric approach in water. ACS Omega 3, 254–258 (2018)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Bagheri, N., Khataee, A., Hassanzadeh, J., Samaei, L.: Highly sensitive chemiluminescence sensing system for organophosphates using mimic LDH supported ZIF-8 nanocomposite. Sens. Actuators B Chem. 284, 220–227 (2019)

    CAS  Article  Google Scholar 

  110. 110.

    Wei, W., Wang, J., Tian, C.-B., Du, S.-W., Wu, K.-C.: A highly hydrolytically stable lanthanide organic framework as a sensitive luminescent probe for DBP and chlorpyrifos detection. Analyst 143, 5481–5486 (2018)

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Lu, Y., Wei, M., Wang, C., Wei, W., Liu, Y.: Enhancing hydrogel-based long-lasting chemiluminescence by a platinum-metal organic framework and its application in array detection of pesticides and d-amino acids. Nanoscale 12, 4959–4967 (2020)

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Jin, J.-C., Zhu, Y.-J., Li, J., Zhang, Y.-L., Xie, C.-G.: A novel microporous metal–organic framework for highly sensitive and selective photochemical determination of chlorpyrifos. Inorg. Chem. Commun. 119, 108062 (2020)

    CAS  Article  Google Scholar 

  113. 113.

    Yu, C.-X., Hu, F.-L., Song, J.-G., Zhang, J.-L., Liu, S.-S., Wang, B.-X., Meng, H., Liu, L.-L., Ma, L.-F.: Ultrathin two-dimensional metal-organic framework nanosheets decorated with tetra-pyridyl calix [4] arene: design, synthesis and application in pesticide detection. Sens. Actuators B Chem. 310, 127819 (2020)

    CAS  Article  Google Scholar 

  114. 114.

    Eskandari, H., Amirzehni, M., Hassanzadeh, J., Vahid, B.: Mesoporous MIP-capped luminescent MOF as specific and sensitive analytical probe: application for chlorpyrifos. Microchim. Acta 187, 1–10 (2020)

    Article  CAS  Google Scholar 

  115. 115.

    Mahmoudi, E., Fakhri, H., Hajian, A., Afkhami, A., Bagheri, H.: High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metal-organic framework sensing platforms. Bioelectrochemistry 130, 107348 (2019)

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Meng, T., Wang, L., Jia, H., Gong, T., Feng, Y., Li, R., Wang, H., Zhang, Y.: Facile synthesis of platinum-embedded zirconia/porous carbons tri-component nanohybrids from metal-organic framework and their application for ultra-sensitively detection of methyl parathion. J. Colloid. Interface Sci. 536, 424–430 (2019)

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Karimian, N., Fakhri, H., Amidi, S., Hajian, A., Arduini, F., Bagheri, H.: A novel sensing layer based on metal–organic framework UiO-66 modified with TiO2–graphene oxide: application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos. New J. Chem. 43, 2600–2609 (2019)

    CAS  Article  Google Scholar 

  118. 118.

    Al’Abri, A.M., Abdul Halim, S.N., Abu Bakar, N.K., Saharin, S.M., Sherino, B., Rashidi Nodeh, H., Mohamad, S.: Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework. J. Environ. Sci. Health B 54, 930–941 (2019)

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Song, D., Jiang, X., Li, Y., Lu, X., Luan, S., Wang, Y., Li, Y., Gao, F.: Metal− organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. J. Hazard Mater. 373, 367–376 (2019)

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Ma, L., He, Y., Wang, Y., Wang, Y., Li, R., Huang, Z., Jiang, Y., Gao, J.: Nanocomposites of Pt nanoparticles anchored on UiO66-NH2 as carriers to construct acetylcholinesterase biosensors for organophosphorus pesticide detection. Electrochim. Acta 318, 525–533 (2019)

    CAS  Article  Google Scholar 

  121. 121.

    Nagabooshanam, S., Roy, S., Mathur, A., Mukherjee, I., Krishnamurthy, S., Bharadwaj, L.M.: Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things. Sci. Rep. 9, 1–9 (2019)

    Article  CAS  Google Scholar 

  122. 122.

    Wang, Z., Ma, B., Shen, C., Cheong, L.-Z.: Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@ MOF nanofibers-based biosensor. Talanta 197, 356–362 (2019)

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Li, X., Gao, X., Gai, P., Liu, X., Li, F.: Degradable metal-organic framework/methylene blue composites-based homogeneous electrochemical strategy for pesticide assay. Sens. Actuators B Chem. 323, 128701 (2020)

    CAS  Article  Google Scholar 

  124. 124.

    Bhardwaj, R., Rao, R.P., Mukherjee, I., Agrawal, P.K., Basu, T., Bharadwaj, L.M.: Layered construction of nano immuno-hybrid embedded MOF as an electrochemical sensor for rapid quantification of total pesticides load in vegetable extract. J. Electroanal. Chem. 873, 114386 (2020)

    Article  CAS  Google Scholar 

  125. 125.

    Xie, Y., Tu, X., Ma, X., Fang, Q., Liu, G., Dai, R., Qu, F., Yu, Y., Lu, L., Huang, X.: A CuO-CeO2 composite prepared by calcination of a bimetallic metal-organic framework for use in an enzyme-free electrochemical inhibition assay for malathion. Microchim. Acta 186, 1–9 (2019)

    Article  CAS  Google Scholar 

  126. 126.

    Deep, A., Bhardwaj, S.K., Paul, A., Kim, K.-H., Kumar, P.: Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosens. Bioelectron. 65, 226–231 (2015)

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Amirzehni, M., Hassanzadeh, J., Vahid, B.: Surface imprinted CoZn-bimetalic MOFs as selective colorimetric probe: application for detection of dimethoate. Sens. Actuators B Chem. 325, 128768 (2020)

    CAS  Article  Google Scholar 

  128. 128.

    Liu, Q., He, Z., Wang, H., Feng, X., Han, P.: Magnetically controlled colorimetric aptasensor for chlorpyrifos based on copper-based metal-organic framework nanoparticles with peroxidase mimetic property. Microchim. Acta 187, 1–9 (2020)

    Article  CAS  Google Scholar 

  129. 129.

    Zhu, L., Zhu, B., Luo, J., Liu, B.: Design and property modulation of metal–organic frameworks with aggregation-induced emission. ACS Mater. Lett. 3, 77–89 (2020)

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Pravin O. Patil.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nangare, S.N., Patil, S.R., Patil, A.G. et al. Structural design of nanosize-metal–organic framework-based sensors for detection of organophosphorus pesticides in food and water samples: current challenges and future prospects. J Nanostruct Chem (2021).

Download citation


  • Organophosphorus pesticides
  • Nanosize-metal–organic framework
  • Structural design
  • Fluorescent sensor
  • Colorimetric sensor
  • Electrochemical sensor