Skip to main content
Log in

Bio-conditioning poly-dihydromyricetin zinc nanoparticles synthesis for advanced catalytic degradation and microbial inhibition

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

An efficient bio-conditioning of the nanomaterial for microbial inhibition and catalytic degradation has been recognized as a promising solution to protect public health and environmental safety. Herein, a bio-conditioned poly-dihydromyricetin-fused zinc nanoparticles (PDMY-Zn NPs) were designed and constructed based on a green tonic approach, which displays excellent processing efficiency against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as well as three dye effluents. Irregular-shaped PDMY-Zn NPs of size range 300–400 nm were formed by the undirected aggregation between Zn2+ and dihydromyricetin (DMY) isolated from Ampelopsis grossedentata, contributing to the controlled release of Zn2+ in gastrointestinal fluid. Such bio-conditioned nanomaterial relied on the stable and strong interaction between the bacterial membrane and carbohydrate polymeric DMY chain in PDMY-Zn NPs achieves a large amount of adhesion to both E. coli and S. aureus, which allows the targeted detachment of Zn2+ from nanoparticles and accurate penetration into the pathogens, thereby achieving the nontoxicity to normal cells and minimizing drug-resistant bacteria. The division and spread of E. coli and S. aureus treated with PDMY-Zn NPs were effectively restricted and halted owing to multidimensional antibacterial behaviors of bacteriostatic agents, which are reflected in membrane damage, high cellular leakages and destroying intracellular ATP. Moreover, the designed PDMY-Zn NPs exhibit an efficient generation of hydroxyl (OH) and excess superoxide, which support it as a promising catalyst for photodegradation of methyl blue (93.02%), methyl orange (93.02%) and safranine (88.3%). Thus, this novel bio-conditioned nanomaterial provides a stable, nontoxic and advanced strategy to address drug-resistant bacteria infections as well as degradation of toxic dye effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Capeletti, L.B., Oliveira, J.F.A., Loiola, L.M.D., Galdino, F.E., Silva Santos, D.E., Soares, T.A., Oliveira Freitas, R., Cardoso, M.B.: Gram-negative bacteria targeting mediated by carbohydrate-carbohydrate interactions induced by surface-modified nanoparticles. Adv. Funct. Mater. 29, 1904216 (2019)

    Article  CAS  Google Scholar 

  2. Willyard, C.: The drug-resistant bacteria that pose the greatest health threats. Nature 543, 15 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. Ogawara, H.: Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. J. Antibiot. (Tokyo). 74, 24–41 (2021)

    Article  PubMed  Google Scholar 

  4. Levin-Reisman, I., Ronin, I., Gefen, O., Braniss, I., Shoresh, N., Balaban, N.Q.: Antibiotic tolerance facilitates the evolution of resistance. Science 335, 826–830 (2017)

    Article  CAS  Google Scholar 

  5. Xin, Q., Shah, H., Nawaz, A., Xie, W., Akram, M.Z., Batool, A., Tian, L., Jan, S.U., Boddula, R., Guo, B., Liu, Q., Gong, J.R.: Antibacterial carbon-based nanomaterials. Adv. Mater. 31, e1804838 (2019)

    Article  PubMed  CAS  Google Scholar 

  6. Christaki, E., Marcou, M., Tofarides, A.: Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J. Mol. Evol. 88, 26–40 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C.W., Ok, Y.S., Gao, B.: Biochar technology in wastewater treatment: a critical review. Chemosphere 252, 126539 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. Donkadokula, N.Y., Kola, A.K., Naz, I., Saroj, D.: A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Biotechnol. 19, 543–560 (2020)

    Article  CAS  Google Scholar 

  9. Qasim, S., Zafar, A., Saif, M.S., Ali, Z., Nazar, M., Waqas, M., Haq, A.U., Tariq, T., Hassan, S.G., Iqbal, F., Shu, X.G., Hasan, M.: Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. J. Photochem. Photobiol. B. 204, 111784 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. Weldegebrieal, G.K.: Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: a review. Inorg. Chem. Commun. 120, 108140 (2020)

    Article  CAS  Google Scholar 

  11. Khan, S.A., Noreen, F., Kanwal, S., Iqbal, A., Hussain, G.: Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater. Sci. Eng. C Mater. Biol. Appl. 82, 46–59 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. Luo, F., Wang, M., Huang, L., Wu, Z., Wang, W., Zafar, A., Tian, Y., Hasan, M., Shu, X.: Synthesis of zinc oxide eudragit FS30D nanohybrids: structure, characterization, and their application as an intestinal drug delivery system. ACS Omega 5, 11799–11808 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ebrahimzadeh, M.A., Naghizadeh, A., Amiri, O., Shirzadi-Ahodashti, M., Mortazavi-Derazkola, S.: Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem. 94, 103425 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. Slavin, Y.N., Asnis, J., Hafeli, U.O., Bach, H.: Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 65 (2017)

    Article  CAS  Google Scholar 

  15. Manges, A.R., Geum, H.M., Guo, A., Edens, T.J., Fibke, C.D., Pitout, J.D.D.: Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev. 32, e00135-e1118 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, X., Bai, H., Yang, Y., Yoon, J., Wang, S., Zhang, X.: Supramolecular antibacterial materials for combatting antibiotic resistance. Adv. Mater. 31, e1805092 (2019)

    PubMed  Google Scholar 

  17. Marreiro, D.D., Cruz, K.J., Morais, J.B., Beserra, J.B., Severo, J.S., de Oliveira, A.R.: Zinc and oxidative stress: current mechanisms. Antioxidants (Basel). 6, 24–33 (2017)

    Article  CAS  PubMed Central  Google Scholar 

  18. Elfeky, A.S., Salem, S.S., Elzaref, A.S., Owda, M.E., Eladawy, H.A., Saeed, A.M., Awad, M.A., Abou-Zeid, R.E., Fouda, A.: Multifunctional cellulose nanocrystal /metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr. Polym. 230, 115711 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. Rambabu, K., Bharath, G., Banat, F., Show, P.L.: Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard Mater. 402, 123560 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. Saratale, G.D., Saratale, R.G., Cho, S.-K., Ghodake, G., Bharagava, R.N., Park, Y., Mulla, S.I., Kim, D.-S., Kadam, A., Nair, S., Shin, H.-S.: Investigation of photocatalytic degradation of reactive textile dyes by Portulaca oleracea-functionalized silver nanocomposites and exploration of their antibacterial and antidiabetic potentials. J. Alloys Compd. 833, 155083 (2020)

    Article  CAS  Google Scholar 

  21. Muthuvel, A., Jothibas, M., Mohana, V., Manoharan, C.: Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg. Chem. Commun. 119, 108086 (2020)

    Article  CAS  Google Scholar 

  22. Brown, E.D., Wright, G.D.: Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. Cushnie, T.P., Cushnie, B., Lamb, A.J.: Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents. 44, 377–386 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Hasan, M., Altaf, M., Zafar, A., Hassan, S.G., Ali, Z., Mustafa, G., Munawar, T., Saif, M.S., Tariq, T., Iqbal, F., Khan, M.W., Mahmood, A., Mahmood, N., Shu, X.: Bioinspired synthesis of zinc oxide nano-flowers: a surface enhanced antibacterial and harvesting efficiency. Mater. Sci. Eng. C. Mater. Biol. Appl. 119, 111280 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. Yousaf, A., Zafar, A., Ali, M., Bukhary, S.M., Manzoor, Y., Tariq, T., Saeed, A., Akram, M., Bukhari, F., Abdullah, M., Zehra, S.S., Hassan, S.G., Hasan, M.: Intrinsic bio-enhancer entities of Fagonia cretica for synthesis of silver nanoparticles involves anti-urease, anti-oxidant and anti-tyosinase activity. Adv. Biosci. Biotechnol. 10, 455–468 (2019)

    Article  CAS  Google Scholar 

  26. Dong, J., Li, H., Min, W.: Preparation, characterization and bioactivities of Athelia rolfsii exopolysaccharide-zinc complex (AEPS-zinc). Int. J. Biol. Macromol. 113, 20–28 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, L., Zhai, G., Zhang, J., Wang, L., Ma, Z., Jia, M., Jia, L.: Antihyperlipidemic and hepatoprotective activities of mycelia zinc polysaccharide from Pholiota nameko SW-02. Int. J. Biol. Macromol. 70, 523–529 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Lu, Q., Xu, L., Meng, Y., Liu, Y., Li, J., Zu, Y., Zhu, M.: Preparation and characterization of a novel Astragalus membranaceus polysaccharide-iron (III) complex. Int. J. Biol. Macromol. 93, 208–216 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. Shen, C., James, S.A., de Jonge, M.D., Turney, T.W., Wright, P.F., Feltis, B.N.: Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol. Sci. 136, 120–130 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. Fan, W., Sun, Q., Li, Y., Tay, F.R., Fan, B.: Synergistic mechanism of Ag(+)-Zn(2+) in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection. J. Nanobiotechnol. 16, 10 (2018)

    Article  CAS  Google Scholar 

  31. Ishida, T.: Antibacterial mechanism of bacteriolyses of bacterial cell walls by zinc (II) ion induced activations of PGN autolysins, and DNA damages. J. Genes Proteins 1, 1 (2017)

    Google Scholar 

  32. Liao, W., Ning, Z., Ma, L., Yin, X., Wei, Q., Yuan, E., Yang, J., Ren, J.: Recrystallization of dihydromyricetin from Ampelopsis grossedentata and its anti-oxidant activity evaluation. Rejuven. Res. 17, 422–429 (2014)

    Article  CAS  Google Scholar 

  33. Hou, X.L., Tong, Q., Wang, W.Q., Shi, C.Y., Xiong, W., Chen, J., Liu, X., Fang, J.G.: Suppression of inflammatory responses by dihydromyricetin, a flavonoid from Ampelopsis grossedentata, via inhibiting the activation of NF-κB and MAPK signaling pathways. J. Nat. Prod. 78, 1689–1696 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. Fan, L., Tong, Q., Dong, W., Yang, G., Hou, X., Xiong, W., Shi, C., Fang, J., Wang, W.: Tissue distribution, excretion, and metabolic profile of dihydromyricetin, a flavonoid from vine tea (Ampelopsis grossedentata) after oral administration in rats. J. Agric. Food Chem. 65, 4597–4604 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. Liu, D., Mao, Y., Ding, L., Zeng, X.A.: Dihydromyricetin: a review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci. Technol. 91, 586–597 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luo, F., Tang, F., Xu, Y., Wang, M., Yang, Y., Zou, S., Tian, Y., Shu, X., Fu, Z.: Green synthesis of ZnO nanoparticles using flavone from Ampelopsis grossedentata and its antioxidant and antibacterial properties. Fine Chem. 37, 1793–1798 (2020). (+1832)

    Google Scholar 

  37. Arjunan, N., Kumari, H.L., Singaravelu, C.M., Kandasamy, R., Kandasamy, J.: Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent. Int. J. Biol. Macromol. 92, 77–87 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. Gao, F., Zhou, H., Shen, Z., Zhu, G., Hao, L., Chen, H., Xu, H., Zhou, X.: Long-lasting anti-bacterial activity and bacteriostatic mechanism of tea tree oil adsorbed on the amino-functionalized mesoporous silica-coated by PAA. Colloids Surf. B Biointerfaces 188, 110784 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. Shen, S., Zhang, T., Yuan, Y., Lin, S., Xu, J., Ye, H.: Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 47, 196–202 (2015)

    Article  CAS  Google Scholar 

  40. Li, J., Chen, Z., Zhou, M., Jing, J., Li, W., Wang, Y., Wu, L., Wang, L., Wang, Y., Lee, M.: Polyoxometalate-driven self-assembly of short peptides into multivalent nanofibers with enhanced antibacterial activity. Angew. Chem. Int. Ed. Engl. 55, 2592–2595 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. Moustafine, R.I., Sitenkov, A.Y., Bukhovets, A.V., Nasibullin, S.F., Appeltans, B., Kabanova, T.V., Khutoryanskiy, V.V., Van den Mooter, G.: Indomethacin-containing interpolyelectrolyte complexes based on Eudragit((R)) E PO/S 100 copolymers as a novel drug delivery system. Int. J. Pharm. 524, 121–133 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. Wang, C., Xiong, W., Reddy Perumalla, S., Fang, J., Calvin Sun, C.: Solid-state characterization of optically pure (+)Dihydromyricetin extracted from Ampelopsis grossedentata leaves. Int. J. Pharm. 511, 245–252 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. Xu, P.-Y., Fu, C.-P., Kankala, R.K., Wang, S.-B., Chen, A.-Z.: Supercritical carbon dioxide-assisted nanonization of dihydromyricetin for anticancer and bacterial biofilm inhibition efficacies. J. Supercrit Fluids. 161, 104840 (2020)

    Article  CAS  Google Scholar 

  44. Bukhari, S.B., Memon, S., Mahroof-Tahir, M., Bhanger, M.I.: Synthesis, characterization and antioxidant activity copper-quercetin complex. Spectrochim. Acta A Mol. Biomol. Spectrosc. 71, 1901–1906 (2009)

    Article  PubMed  CAS  Google Scholar 

  45. Guo, Q., Yuan, J., Zeng, J., He, X., Li, D.: Synthesis of dihydromyricetin–manganese (II) complex and interaction with DNA. J. Mol. Struct. 1027, 64–69 (2012)

    Article  CAS  Google Scholar 

  46. Pan, H.L., Liu, Q.Q., Zhang, Y.H., Wu, H.T.: Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics. RSC Adv. 6, 86889–86903 (2016)

    Article  CAS  Google Scholar 

  47. Ly, N.H., Joo, S.-W.: Zn(II)-concentration dependent Raman spectra in the dithizone complex on gold nanoparticle surfaces in environmental water samples. Appl. Surf. Sci. 356, 1005–1011 (2015)

    Article  CAS  Google Scholar 

  48. Pramanik, A., Maiti, S., Dhawa, T., Sreemany, M., Mahanty, S.: High faradaic charge storage in ZnCo2S4 film on Ni-foam with a hetero-dimensional microstructure for hybrid supercapacitor. Mater. Today Energy 9, 416–427 (2018)

    Article  Google Scholar 

  49. Pan, C., Ou, M., Cheng, Q., Zhou, Y., Yu, Y., Li, Z., Zhang, F., Xia, D., Mei, L., Ji, X.: Z-scheme heterojunction functionalized pyrite nanosheets for modulating tumor microenvironment and strengthening photo/chemodynamic therapeutic effects. Adv. Funct. Mater. 30, 1906466 (2019)

    Article  CAS  Google Scholar 

  50. Dutta, S., Ray, C., Negishi, Y., Pal, T.: Facile synthesis of unique hexagonal nanoplates of Zn/Co hydroxy sulfate for efficient electrocatalytic oxygen evolution reaction. ACS Appl. Mater. Interfaces 9, 8134–8141 (2017)

    Article  CAS  PubMed  Google Scholar 

  51. Ghosh, N.G., Sarkar, A., Zade, S.S.: The type-II nn inorganic/organic nano-heterojunction of Ti3+ self-doped TiO2 nanorods and conjugated co-polymers for photoelectrochemical water splitting and photocatalytic dye degradation. Chem. Eng. J. 407, 127227 (2021)

    Article  CAS  Google Scholar 

  52. Javed, M.S., Shaheen, N., Hussain, S., Li, J., Shah, S.S.A., Abbas, Y., Ahmad, M.A., Raza, R., Mai, W.: An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra. J. Mater. Chem. A. 7, 946–957 (2019)

    Article  CAS  Google Scholar 

  53. Yang, S.J., Kim, T., Im, J.H., Kim, Y.S., Lee, K., Jung, H., Park, C.R.: MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24, 464–470 (2012)

    Article  CAS  Google Scholar 

  54. Xiao, H., Zhang, Z.P., Huang, Z.X., Rong, M.Z., Zhang, M.Q.: Highly thermally conductive, superior flexible and surface metallisable boron nitride paper fabricated by a facile and scalable approach. Compos. Commun. 23, 100584 (2021)

    Article  Google Scholar 

  55. Liu, H., Xia, G., Zhang, R., Jiang, P., Chen, J., Chen, Q.: MOF-derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Adv. 7, 3686–3694 (2017)

    Article  CAS  Google Scholar 

  56. Zhang, M., Zhao, H., Shen, Y., Wang, Y., Zhao, Z., Zhang, Y.: Preparation, characterization and antioxidant activity evaluation in vitro of Fritillaria ussuriensis polysaccharide-zinc complex. Int. J. Biol. Macromol. 146, 462–474 (2020)

    Article  CAS  PubMed  Google Scholar 

  57. Hasan, M., Yang, W., Ju, Y., Chu, X., Wang, Y., Deng, Y., Mahmood, N., Hou, Y.: Biocompatibility of iron carbide and detection of metals ions signaling proteomic analysis via HPLC/ESI-Orbitrap. Nano Res. 10, 1912–1923 (2017)

    Article  CAS  Google Scholar 

  58. Wang, J., Wang, A., Wang, W.-X.: Evaluation of nano-ZnOs as a novel Zn source for marine fish: importance of digestive physiology. Nanotoxicology 11, 1026–1039 (2017)

    Article  CAS  PubMed  Google Scholar 

  59. Xiang, D., Wang, C.G., Wang, W.Q., Shi, C.Y., Xiong, W., Wang, M.D., Fang, J.G.: Gastrointestinal stability of dihydromyricetin, myricetin, and myricitrin: an in vitro investigation. Int. J. Food Sci. Nutr. 68, 704–711 (2017)

    Article  CAS  PubMed  Google Scholar 

  60. Wang, N., Tong, T., Xie, M., Gaillard, J.F.: Lifetime and dissolution kinetics of zinc oxide nanoparticles in aqueous media. Nanotechnology 27, 324001 (2016)

    Article  PubMed  CAS  Google Scholar 

  61. Bharathi, D., Ranjithkumar, R., Chandarshekar, B., Bhuvaneshwari, V.: Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: as a bionanocomposite. Int. J. Biol. Macromol. 129, 989–996 (2019)

    Article  CAS  PubMed  Google Scholar 

  62. Wu, Y., Bai, J., Zhong, K., Huang, Y., Gao, H.: A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R,3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus. Food Chem. 218, 463–470 (2017)

    Article  CAS  PubMed  Google Scholar 

  63. Xu, Y., Shi, Y., Lei, F., Dai, L.: A novel and green cellulose-based Schiff base-Cu (II) complex and its excellent antibacterial activity. Carbohydr. Polym. 230, 115671 (2020)

    Article  CAS  PubMed  Google Scholar 

  64. Verlee, A., Mincke, S., Stevens, C.V.: Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 164, 268–283 (2017)

    Article  CAS  PubMed  Google Scholar 

  65. Caroff, M., Karibian, D.: Structure of bacterial lipopolysaccharides. Carbohydr. Res. 338, 2431–2447 (2003)

    Article  CAS  PubMed  Google Scholar 

  66. Mahmoudi, M., Bertrand, N., Zope, H., Farokhzad, O.C.: Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today 11, 817–832 (2016)

    Article  CAS  Google Scholar 

  67. Arita-Morioka, K., Yamanaka, K., Mizunoe, Y., Ogura, T., Sugimoto, S.: Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob. Agents Chemother. 59, 633–641 (2015)

    Article  PubMed  CAS  Google Scholar 

  68. Bai, H., Fu, X., Huang, Z., Lv, F., Liu, L., Zhang, X., Wang, S.: Supramolecular germicide switches through host-guest interactions for decelerating emergence of drug-resistant pathogens. Chem. Select 2, 7940–7945 (2017)

    CAS  Google Scholar 

  69. Hasan, M., Ullah, I., Zulfiqar, H., Naeem, K., Iqbal, A., Gul, H., Ashfaq, M., Mahmood, N.: Biological entities as chemical reactors for synthesis of nanomaterials: progress, challenges and future perspective. Mater. Today Chem. 8, 13–28 (2018)

    Article  CAS  Google Scholar 

  70. Bajpai, V.K., Sharma, A., Baek, K.-H.: Antibacterial mode of action of Ginkgo biloba leaf essential oil: effect on morphology and membrane permeability. Bangladesh J. Pharmacol. 10, 337–350 (2015)

    Article  Google Scholar 

  71. McQuillan, J.S., Infante, H.G., Stokes, E., Shaw, A.M.: Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6, 857–866 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. Mishra, P.K., Mishra, H., Ekielski, A., Talegaonkar, S., Vaidya, B.: Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today 22, 1825–1834 (2017)

    Article  CAS  PubMed  Google Scholar 

  73. Vimbela, G.V., Ngo, S.M., Fraze, C., Yang, L., Stout, D.A.: Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomed. 12, 3941–3965 (2017)

    Article  CAS  Google Scholar 

  74. Song, J., Chen, H., Wei, Y., Liu, J.: Synthesis of carboxymethylated beta-glucan from naked barley bran and its antibacterial activity and mechanism against Staphylococcus aureus. Carbohydr. Polym. 242, 116418 (2020)

    Article  CAS  PubMed  Google Scholar 

  75. Hobman, J.L., Crossman, L.C.: Bacterial antimicrobial metal ion resistance. J. Med. Microbiol. 64, 471–497 (2015)

    Article  CAS  PubMed  Google Scholar 

  76. Nguyen, C.H., Fu, C.-C., Juang, R.-S.: Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J. Clean Prod. 202, 413–427 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support from Guangdong-Hong Kong Cooperation Project (2017A050506055), the Guangdong Provincial Education Department Project (2017KZDXM045, 2017KTSCX098), Guangdong Provincial Department of Agriculture and Rural Affairs Project (2020KJ115, 2021KJ115), the Guangzhou Foreign Cooperation Project (201907010033), Guangdong Province Science and Technology Project (2016A020210066).

Author information

Authors and Affiliations

Authors

Contributions

All authors do not have any financial and personal relationships with other people or organizations.

Corresponding authors

Correspondence to Murtaza Hasan or Xugang Shu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5242 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Zeng, D., Wang, W. et al. Bio-conditioning poly-dihydromyricetin zinc nanoparticles synthesis for advanced catalytic degradation and microbial inhibition. J Nanostruct Chem 12, 903–917 (2022). https://doi.org/10.1007/s40097-021-00443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00443-4

Keywords

Navigation