Skip to main content

Low dimensional Bi2Se3 NPs/reduced graphene oxide nanocomposite for simultaneous detection of L-Dopa and acetaminophen in presence of ascorbic acid in biological samples and pharmaceuticals

Abstract

Graphene-based inorganic layered materials have developed as a versatile, new class of nanomaterials and drawn huge scientific interest, owing to its thickness-dependent physical properties, exfoliated two-dimensional crystals in various technological and industrial applications. This work is the first demonstration of the fabrication of low dimensional bismuth selenide (Bi2Se3) NPs functionalized reduced graphene oxide (rGO) on the platinum electrode (Pt-E) for the ultra-sensitive and simultaneous detection of acetaminophen (ACT) and L-DOPA (LD) in the presence of ascorbic acid (AA) in various biological samples and pharmaceuticals. The constructed electrode accelerates the electron transfer reactions of LD and ACT without interfering with the electron transfer reactions of AA, which was an electroactive coexisting chemical. At pH 6.0 in 0.1 M phosphate buffer solution, Bi2Se3 NPs/rGO/Pt-E showed a sixfold and fivefold increase in cyclic voltammetry for LD and ACT signals, respectively, when compared to bare Pt-E. Under the optimal conditions, differential pulse voltammetry (DPV) demonstrated that the anodic peak currents were linearly dependent on the concentrations of LD (0.006–0.25 mM) and ACT (0.0045–0.14 mM) at anodic peak potentials of + 0.25 and + 0.52 V, respectively. With a signal to noise (S/N) ratio of 3, acceptable detection limits of 0.23 and 0.17 M were achieved for both LD and ACT, with strong intra- and inter-electrode repeatability. Overall, the fabricated nanosensor offered numerous advantages including ease to fabricate, ultra-sensitivity, good stability, and reproducibility towards the detection of LD and ACT in various bioloical samples and pharmaceuticals. The amounts of LD and ACT were also identified in commercial pharmaceuticals and synthetic urine samples to validate the applicability of the modified electrode.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Castro Caldas, A., Teodoro, T., Ferreira, J.J.: The launch of opicapone for Parkinson’s disease: negatives versus positives. Expert Opin. Drug Saf. 17, 331–337 (2018)

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Movlaee, K., Beitollahi, H., Ganjali, M.R., Norouzi, P.: Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Microchim. Acta. 184, 3281–3289 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    César, Id.C., Byrro, R.M.D., de Santana e Silva Cardoso, F.F., Mundim, I.M., de Souza Teixeira, L., Pontes da Silva, E., Gomes, S.A., Bonfim, R.R., Pianetti, G.A.: Simultaneous quantitation of levodopa and 3-O-methyldopa in human plasma by HPLC–ESI-MS/MS: Application for a pharmacokinetic study with a levodopa/benserazide formulation. J. Pharm. Biomed. Anal. 56, 1094–1100 (2011)

    Article  CAS  Google Scholar 

  4. 4.

    Yue, H.Y., Zhang, H., Huang, S., Lin, X.Y., Gao, X., Chang, J., Yao, L.H., Jun Guo, Er.: Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens Bioelectron. 89, 592–597 (2017)

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Pistonesi, M., Centurión, M.E., Band, B.S.F., Damiani, P.C., Olivieri, A.C.: Simultaneous determination of levodopa and benserazide by stopped-flow injection analysis and three-way multivariate calibration of kinetic-spectrophotometric data. J. Pharm. Biomed. Anal. 36, 541–547 (2014)

    Article  CAS  Google Scholar 

  6. 6.

    Hansson, C., Agrup, G., Rorsman, H., Rosengren, A.M., Rosengren, E., Edholm, L.E.: Analysis of cysteinyldopas, dopa, dopamine, noradrenaline and adrenaline in serum and urine using high-performance liquid chromatography and electrochemical detection. J. Chromatogr. B Biomed. Appl. 162, 7–22 (1979)

    CAS  Article  Google Scholar 

  7. 7.

    He, W.-W., Zhou, X.-W., Lu, J.-Q.: Simultaneous determination of benserazide and levodopa by capillary electrophoresis–chemiluminescence using an improved interface. J. Chromatogr. A. 1131, 289–292 (2006)

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Soh, C.S., Raveendran, P.: Multi-resolution analysis of near infrared spectroscopic data for calibration and prediction of active substances in phosphate buffer solution, pp. 415–418. Springer, Berlin Heidelberg (2007)

    Google Scholar 

  9. 9.

    Vilchez, J., Blanc, R., Avidad, R., Navalón, A.: Spectrofluorimetric determination of paracetamol in pharmaceuticals and biological fluids. J. Pharm. Biomed. Anal. 13, 1119–1125 (1995)

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Nebot, C., Gibb, S.W., Boyd, K.G.: Quantification of human pharmaceuticals in water samples by high performance liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta. 598, 87–94 (2007)

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Săndulescu, R., Mirel, S., Oprean, R.: The development of spectrophotometric and electroanalytical methods for ascorbic acid and acetaminophen and their applications in the analysis of effervescent dosage forms. J. Pharm. Biomed. Anal. 23, 77–87 (2000)

    PubMed  Article  Google Scholar 

  12. 12.

    Perez-Ruiz, T., Martinez-Lozano, C., Tomas, V., Galera, R.: Migration behaviour and separation of acetaminophen and p-aminophenol in capillary zone electrophoresis: analysis of drugs based on acetaminophen. J. Pharm. Biomed. Anal. 38, 87–93 (2005)

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Kunene, K., Weber, M., Sabela, M., Voiry, D., Kanchi, S., Bisetty, K., Mikhael, B.: Highly-efficient electrochemical label-free immunosensor for the detection of ochratoxin A in coffee samples. Sens. Actuators B Chem. 305, 127438 (2020)

    CAS  Article  Google Scholar 

  14. 14.

    Rezaei, B., Shams-Ghahfarokhi, L., Havakeshian, E., Ensafi, A.A.: An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta 158, 42–50 (2016)

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Fouladgar, M., Karimi-Maleh, H., Gupta, V.K.: Highly sensitive voltammetric sensor based on NiO nanoparticle room temperature ionic liquid modified carbon paste electrode for levodopa analysis. J. Mol. Liq. 208, 78–83 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    Xu, Y., Lei, W., Su, J., Hu, J., Yu, X., Zhou, T., Yang, Y., Mandler, D., Hao, Q.: A high-performance electrochemical sensor based on g-C3N4-E-PEDOT for the determination of acetaminophen. Electrochim. Acta. 259, 994–1003 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    Yang, C., Zhu, S., Ma, J., Song, J., Ran, P., Fu, Y.: Highly sensitive electrochemical sensing platform for the detection of L-dopa based on electropolymerizing glutathione disulfide and multi-walled carbon nanotube-modified electrodes. S. Afr. J. Chem. 71, 182–187 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    Babaei, A., Sohrabi, M.: Selective simultaneous determination of levodopa and acetaminophen in the presence of ascorbic acid using a novel TiO2 hollow sphere/multi-walled carbon nanotube/poly-aspartic acid composite modified carbon paste electrode. Anal. Methods. 8, 1135–1144 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    Zhang, Z., Fu, X., Li, K., Liu, R., Peng, D., He, L., Wang, M., Zhang, H., Zhou, L.: One-step fabrication of electrochemical biosensor based on DNA-modified three-dimensional reduced graphene oxide and chitosan nanocomposite for highly sensitive detection of Hg(II). Sens. Actuators B Chem. 225, 453–462 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    Venkatesh, K., Rajakumaran, R., Chen, S.-M., Karuppiah, C., Yang, C.-C., Ramaraj, S.K., Ali, M.A., Al-Hemaid, F.M.A., El-Shikh, M.S., Almunqedhi, B.M.A.: A novel hybrid construction of MnMoO4 nanorods anchored graphene nanosheets; an efficient electrocatalyst for the picomolar detection of ecological pollutant ornidazole in water and urine samples. Chemosphere 273, 129665 (2021)

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Zhu, C., Yang, G., Li, H., Du, D., Lin, Y.: Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87, 230–249 (2015)

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Serrano, N., Alberich, A., Díaz-Cruz, J., Ariño, C., Esteban, M.: Coating methods, modifiers and applications of bismuth screen-printed electrodes. Trends Anal. Chem. 46, 15–29 (2013)

    CAS  Article  Google Scholar 

  23. 23.

    Wang, J., Lu, J., Hocevar, S.B., Farias, P.A.M., Ogorevc, B.: Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem. 72, 3218–3222 (2000)

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Lezi, N., Economou, A., Dimovasilis, P.A., Trikalitis, P.N., Prodromidis, M.I.: Disposable screen-printed sensors modified with bismuth precursor compounds for the rapid voltammetric screening of trace Pb(II) and Cd(II). Anal. Chim. Acta. 728, 1–8 (2012)

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Sopha, H., Baldrianová, L., Tesařová, E., Grincienė, G., Weidlich, T., Švancara, I., Hočevar, B.: A new type of bismuth electrode for electrochemical stripping analysis based on the ammonium tetrafluorobismuthate bulk-modified carbon paste. Electroanalysis 22, 1489–1493 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    Dimovasilis, P.A., Prodromidis, M.I.: Bismuth-dispersed xerogel-based composite films for trace Pb(II) and Cd(II) voltammetric determination. Anal. Chim. Acta. 769, 49–55 (2013)

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    María-Hormigos, R., Gismera, M.J., Procopio, J.R., Sevilla, M.T.: Disposable screen-printed electrode modified with bismuth–PSS composites as high sensitive sensor for cadmium and lead determination. J. Electroanal. Chem. 767, 114–122 (2016)

    Article  CAS  Google Scholar 

  28. 28.

    Riman, D., Avgeropoulos, A., Hrbac, J., Prodromidis, M.I.: Sparked-bismuth oxide screen-printed electrodes for the determination of riboflavin in the sub-nanomolar range in non-deoxygenated solutions. Electrochim. Acta. 165, 410–415 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    de Lima, C.A., Spinelli, A.: Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochim. Acta. 107, 542–548 (2013)

    Article  CAS  Google Scholar 

  30. 30.

    de Figueiredo-Filho, L.C.S., dos Santos, V.B., Janegitz, B.C., Guerreiro, T.B., Fatibello-Filho, O., Faria, R.C., Humberto, L., Junior, M.: Differential pulse voltammetric determination of paraquat using a bismuth-film electrode. Electroanalysis 22, 1260–1266 (2010)

    Article  CAS  Google Scholar 

  31. 31.

    Sopha, H., Hocevar, S.B., Pihlar, B., Ogorevc, B.: Bismuth film electrode for stripping voltammetric measurement of sildenafil citrate. Electrochim. Acta. 60, 274–277 (2012)

    CAS  Article  Google Scholar 

  32. 32.

    Tseliou, F., Avgeropoulos, A., Falaras, P., Prodromidis, M.I.: Low dimensional Bi2Te3-graphene oxide hybrid film-modified electrodes for ultra-sensitive stripping voltammetric detection of Pb(II) and Cd(II). Electrochim. Acta. 231, 230–237 (2017)

    CAS  Article  Google Scholar 

  33. 33.

    Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    CAS  Article  Google Scholar 

  34. 34.

    Gorle, G., Bathinapatla, A., Chen, Y.-Z., Ling, Y.-C.: Near infrared light activatable PEI-wrapped bismuth selenide nanocomposites for photothermal/photodynamic therapy induced bacterial inactivation and dye degradation. RSC Adv. 8, 19827–19834 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    Deroco, P.B., Vicentini, F.C., Oliveira, G.G., Rocha-Filho, R.C., Fatibello-Filho, O.: Square-wave voltammetric determination of hydroxychloroquine in pharmaceutical and synthetic urine samples using a cathodically pretreated boron-doped diamond electrode. J. Electroanal. Chem. 719, 19–23 (2014)

    CAS  Article  Google Scholar 

  36. 36.

    Hennighausen, Z., Lane, C., Buda, I.G., Mathur, V.K., Bansil, A., Kar, S.: Evidence of a purely electronic two-dimensional lattice at the interface of TMD/Bi2Se3 heterostructures. Nanoscale 11, 15929–15938 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Ota, J.R., Roy, P., Srivastava, S.K., Popovitz-Biro, R., Tenne, R.: A simple hydrothermal method for the growth of Bi2Se3nanorods. Nanotechnology 17, 1700–1705 (2006)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Xiao, C., Yang, J., Zhu, W., Peng, J., Zhang, J.: Electrodeposition and characterization of Bi2Se3 thin films by electrochemical atomic layer epitaxy (ECALE). Electrochim. Acta. 54, 6821–6826 (2009)

    CAS  Article  Google Scholar 

  39. 39.

    Singh, P., Kim, Y.J., Wang, C., Mathiyalagan, R., Yang, D.C.: The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif. Cells Nanomed. Biotechnol. 44, 1150–1157 (2016)

    CAS  PubMed  Google Scholar 

  40. 40.

    Dun, C., Hewitt, C.A., Huang, H., Xu, J., Montgomery, D.S., Nie, W., Jiang, Q., Carroll, D.L.: Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric fabrics. ACS Appl. Mater. Interfaces. 7, 7054–7059 (2015)

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Liu, M., Spanos, P.D., Yu, S.-H.: Synthesis of ultrathin Bi2Se3 nanosheets/graphene nanocomposite with defects/vacancies-dependent transient photocurrent performance. Nano Energy 64, 103877 (2019)

    CAS  Article  Google Scholar 

  42. 42.

    Zhuang, A., Zhao, Y., Liu, X., Xu, M., Wang, Y., Jeong, U., Wang, X., Zeng, J.: Controlling the lateral and vertical dimensions of Bi2Se3 nanoplates via seeded growth. Nano Res. 8, 246–256 (2015)

    CAS  Article  Google Scholar 

  43. 43.

    Chaiyakun, S., Witit-anun, N., Nuntawong, N., Chindaudom, P., Oaew, S., Kedkeaw, C., Limsuwande, P.: Preparation and characterization of graphene oxide nanosheets. Procedia Eng. 32(759), 764 (2012)

    Google Scholar 

  44. 44.

    Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., VentriceJr, C.A., Ruoffa, R.S.: Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145–152 (2009)

    CAS  Article  Google Scholar 

  45. 45.

    Sun, Z., Liufu, S., Chen, L.: Synthesis and characterization of nanostructured bismuth selenide thin films. Dalton Trans. 39, 10883–10887 (2010)

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Suvardhan, K., Heba, A.K.: Electrochemical biosensor for the detection of amygdalin in apple seeds with a hybrid of f-MWCNTs/CoFe2O4 nanocomposite. Curr. Anal. Chem. 16, 660–668 (2020)

    Article  CAS  Google Scholar 

  47. 47.

    Savariraj, A.D., Vinoth, V., Mangalaraja, R.V., Arun, T., Contreras, D., Akbari-Fakhrabadi, A., Valdésc, H., Banat, F.: Microwave-assisted synthesis of localized surface plasmon resonance enhanced bismuth selenide (Bi2Se3) layers for non-enzymatic glucose sensing. J. Electroanal. Chem. 856, 113629 (2020)

    CAS  Article  Google Scholar 

  48. 48.

    Ghodsi, J., Rafati, A.A., Shoja, Y.: First report on hemoglobin electrostatic immobilization on WO3 nanoparticles: application in the simultaneous determination of levodopa, uric acid, and folic acid. Anal. Bioanal. Chem. 408, 3899–3909 (2016)

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Teixeira, M.F.S., Marcolino-Júnior, L.H., Fatibello-Filho, O., Dockal, E.R., Bergamini, M.F.: An electrochemical sensor for l-dopa based on oxovanadium-salen thin film electrode applied flow injection system. Sens. Actuators B Chem. 122, 549–555 (2007)

    CAS  Article  Google Scholar 

  50. 50.

    Aslanoglu, M., Kutluay, A., Goktas, S., Karabulut, S.: Voltammetric behaviour of levodopa and its quantification in pharmaceuticals using a β-cyclodextrine doped poly (2,5-diaminobenzenesulfonic acid) modified electrode. J. Chem. Sci. 121, 209–215 (2009)

    CAS  Article  Google Scholar 

  51. 51.

    Kemmegne-Mbouguen, J.C., Toma, H.E., Araki, K., Constantino, V.R.L., Ngameni, E., Angnes, L.: Simultaneous determination of acetaminophen and tyrosine using a glassy carbon electrode modified with a tetraruthenated cobalt(II) porphyrin intercalated into a smectite clay. Microchim. Acta. 183, 3243–3253 (2016)

    CAS  Article  Google Scholar 

  52. 52.

    Liu, R., Zeng, X., Liu, J., Luo, J., Zheng, Y., Liu, X.: A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbon nanotubes for simultaneous determination of dopamine and paracetamol. Microchim. Acta. 183, 1543–1551 (2016)

    CAS  Article  Google Scholar 

  53. 53.

    Wang, S.-F., Xie, F., Hu, R.-F.: Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sens. Actuators B Chem. 123, 495–500 (2007)

    CAS  Article  Google Scholar 

  54. 54.

    Baghayeri, M., Namadchian, M.: Fabrication of a nanostructured luteolin biosensor for simultaneous determination of levodopa in the presence of acetaminophen and tyramine: application to the analysis of some real samples. Electrochim. Acta. 108, 22–31 (2013)

    CAS  Article  Google Scholar 

  55. 55.

    Babaei, A., Sohrabi, M., Taheri, A.R.: Highly sensitive simultaneous determination of l-dopa and paracetamol using a glassy carbon electrode modified with a composite of nickel hydroxide nanoparticles/multi-walled carbon nanotubes. J. Electroanal. Chem. 698, 45–51 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support of the Ministry of Science and Technology, Taiwan (MOST 104-2113-M-007-008-MY3 and MOST 104-2923-M-007-002-MY3) and the National Tsing Hua University for this work.

Author information

Affiliations

Authors

Contributions

The manuscript was written by G.G and AB through the contributions of all authors. G.G, A.B, and S.K. conceived ideas and G.G, A.B carried out the experiments and interpreted the results. YCL and MR supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Suvardhan Kanchi or Mashallah Rezakazemi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorle, G., Bathinapatla, A., Kanchi, S. et al. Low dimensional Bi2Se3 NPs/reduced graphene oxide nanocomposite for simultaneous detection of L-Dopa and acetaminophen in presence of ascorbic acid in biological samples and pharmaceuticals. J Nanostruct Chem (2021). https://doi.org/10.1007/s40097-021-00428-3

Download citation

Keywords

  • Acetaminophen
  • Ascorbic acid
  • Bi2Se3 NPs
  • Graphene oxide
  • Nanosensor
  • Biological samples
  • Pharmaceuticals