Skip to main content

An investigation on temperature-dependant surface properties of porous carbon nanoparticles derived from biomass


In this work, a detailed investigation on the temperature-dependant surface features of biomass derived porous carbon nanoparticles was conducted. The carbon nanoparticles were prepared by carbonization of Caesalpinia Sappan waste pods in single step pyrolysis, using a range of temperature from 400 to 1000 °C. The systematic analysis of materials obtained at different temperatures assisted to correlate the effect of pyrolysis temperature on the surface properties. Different methods were employed which were beneficial to demonstrate the overall surface area and porous features constituted by pores of different size (micropores, mesopores) and shapes such as cylindrical or narrow slit shape. This study confirmed the optimization of material properties with rise in pyrolysis temperature; as a result, Caesalpinia Sappan derived carbon nanoparticles pyrolyzed at 1000 °C (CSCNP1000) exhibited the largest surface area (794 m2 g−1 by BET) and pore volume (0.37 cm3 g−1) in the series. The resulted carbon products were microporous/mesoporous in nature, the condition which is considered suitable for the energy storage applications. The energy storage device, supercapacitor, was fabricated which exhibited a specific capacitance of 170.5 F g−1 at 0.25 A g−1. This work demonstrated the suitability of temperature dependent surface of a carbon nanoparticle to be actively used as a cost-effective energy storage device.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Gatoo, M.A., Naseem, S., Arfat, M.Y., Mahmood Dar, A., Qasim, K., Zubair, S.: Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed. Res. Int. 2014, 1–8 (2014)

    Article  CAS  Google Scholar 

  2. 2.

    Lehn, J.-M.: Toward self-organization and complex matter. Science 295(5564), 2400–2403 (2002)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Li, K., Ma, C.F., Ling, Y., Li, M., Gao, Q., Luo, W.J.J.M.C.: Physics, Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds. Mater. Chem. Phys. 162, 149–161 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    Mane, G.P., Talapaneni, S.N., Anand, C., Varghese, S., Iwai, H., Ji, Q., Ariga, K., Mori, T., Vinu, A.: Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid. Adv. Funct. Mater. 22(17), 3596–3604 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    Raymundo-Piñero, E., Cadek, M., Béguin, F.: Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19(7), 1032–1039 (2009)

    Article  CAS  Google Scholar 

  6. 6.

    Zhu, Z., Jiang, H., Guo, S., Cheng, Q., Hu, Y., Li, C.J.S.R.: Dual tuning of biomass-derived hierarchical carbon nanostructures for supercapacitors: the role of balanced meso/microporosity and grapheme. Sci. Rep. 5, 15936 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Lee, J., Kim, J., Hyeon, T.: Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18(16), 2073–2094 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    Hulicova-Jurcakova, D., Seredych, M., Lu, G.Q., Bandosz, T.J.: Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19(3), 438–447 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    Xu, B., Chen, Y., Wei, G., Cao, G., Zhang, H., Yang, Y.: Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater. Chem. Phys. 124(1), 504–509 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    Rose, M., Korenblit, Y., Kockrick, E., Borchardt, L., Oschatz, M., Kaskel, S., Yushin, G.: Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7(8), 1108–1117 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Taer, E., Deraman, M., Talib, I., Awitdrus, A., Hashmi, S., Umar, A.: Preparation of a highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitors. Int. J. Electrochem. Sci 6(8), 3301–3315 (2011)

    CAS  Google Scholar 

  12. 12.

    Borchardt, L., Zhu, Q.-L., Casco, M.E., Berger, R., Zhuang, X., Kaskel, S., Feng, X., Xu, Q.J.M.T.: Toward a molecular design of porous carbon materials. Mater. Today 20(10), 592–610 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    Yang, H., Ye, S., Zhou, J., Liang, T.: Biomass-derived porous carbon materials for supercapacitor. Front. Chem. 7, 1–17 (2019)

    Article  CAS  Google Scholar 

  14. 14.

    Liu, C., Yan, X., Hu, F., Gao, G., Wu, G., Yang, X.: Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. J. Adv. Mater. 30(17), 1705713(1–14) (2018)

    Google Scholar 

  15. 15.

    Supriya, S., Shetti, V.S., Hegde, G.: Conjugated systems of porphyrin–carbon nanoallotropes: a review. New J. Chem. 42(15), 12328–12348 (2018)

    Article  Google Scholar 

  16. 16.

    Satapathy, P., Adiga, R., Kumar, M., Hegde, G., Prasad, S.K.: Porous nanocarbon particles drive large magnitude and fast photomechanical actuators. J. Nanostruct. Chem. (2021).

    Article  Google Scholar 

  17. 17.

    Rastogi, A., Pandey, F.P., Parmar, A.S., Singh, S., Hegde, G., Manohar, R.: Effect of carbonaceous oil palm leaf quantum dot dispersion in nematic liquid crystal on zeta potential, optical texture and dielectric properties. J. Nanostruct. Chem. (2021).

    Article  Google Scholar 

  18. 18.

    Kanagavalli, P., Pandey, G.R., Bhat, V.S., Veerapandian, M., Hegde, G.: Nitrogenatedcarbon nanoelectrocatalyst advertently processed from bio-waste of Allium sativum for oxygen reduction reaction. J. Nanostruct. Chem. (2021).

    Article  Google Scholar 

  19. 19.

    John, A., Benny, L., Cherian, A.R., Narahari, S.Y., Varghese, A., Hegde, G.: Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review. J. Nanostruct. Chem. 11, 1–31 (2021).

    CAS  Article  Google Scholar 

  20. 20.

    Ji, Y., Wang, S., Dong, Y., Li, L., Li, L., Feng, X., Lu, X., Mu, L.: Tuning nitrogen species on natural biomass derived porous carbon for efficient acetone adsorption. Mater. Chem. Phys. 253, 123338 (2020)

    CAS  Article  Google Scholar 

  21. 21.

    Liu, Y., Chen, J., Cui, B., Yin, P., Zhang, C.: Design and preparation of biomass-derived carbon materials for supercapacitors: a review. C 4(4), 1–32 (2018)

    Google Scholar 

  22. 22.

    De, S., Balu, A.M., van der Waal, J.C., Luque, R.: Biomass-derived porous carbon materials: synthesis and catalytic applications. J. ChemCatChem 7(11), 1608–1629 (2015)

    CAS  Article  Google Scholar 

  23. 23.

    Wang, L., Hu, X.: Recent advances in porous carbon materials for electrochemical energy storage. Chem. Asian J. 13(12), 1518–1529 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Deng, J., Li, M., Wang, Y.: Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem. 18(18), 4824–4854 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    Upare, D.P., Yoon, S., Lee, C.W.: Nano-structured porous carbon materials for catalysis and energy storage. Korean J. Chem. Eng. 28(3), 731–743 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., Kollu, P., Jeong, S.K., Grace, A.N.: Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci. Rep. 9(1), 16315 (2019)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Zhou, X., Li, H., Yang, J.: Biomass-derived activated carbon materials with plentiful heteroatoms for high-performance electrochemical capacitor electrodes. J. Energy Chem. 25(1), 35–40 (2016)

    Article  Google Scholar 

  28. 28.

    Senthilkumar, N., Murugesan, S., Banu, N., Supriya, S., Rajeshkannan, C.: Biochemical estimation and antimicrobial activities of the extracts of Caesalpinia Sappan Linn. J Bangladesh J. Sci. Ind. Res. 46(4), 429–436 (2011)

    Article  Google Scholar 

  29. 29.

    Sakintuna, B., Yürüm, Y.: Templated porous carbons: A review article. Ind. Eng. Chem. Res. 44(9), 2893–2902 (2005)

    CAS  Article  Google Scholar 

  30. 30.

    Wan, Y., Shi, Y., Zhao, D.: Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chem. Mater. 20(3), 932–945 (2008)

    CAS  Article  Google Scholar 

  31. 31.

    Zhao, J., Niu, W., Zhang, L., Cai, H., Han, M., Yuan, Y., Majeed, S., Anjum, S., Xu, G.: A template-free and surfactant-free method for high-yield synthesis of highly monodisperse 3-aminophenol–formaldehyde resin and carbon nano/microspheres. Macromolecules 46(1), 140–145 (2013)

    CAS  Article  Google Scholar 

  32. 32.

    Chen, D., Zhou, H., Li, H., Chen, J., Li, S., Zheng, F.: Self-template synthesis of biomass-derived 3D hierarchical N-doped porous carbon for simultaneous determination of dihydroxybenzene isomers. Sci. Rep. 7(1), 1–10 (2017)

    Article  CAS  Google Scholar 

  33. 33.

    Yang, W., Hou, L., Xu, X., Li, Z., Ma, X., Yang, F., Li, Y.: Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors. Carbon 130, 325–332 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    Xu, Z., Chen, J., Zhang, X., Song, Q., Wu, J., Ding, L., Zhang, C., Zhu, H., Cui, H.: Template-free preparation of nitrogen-doped activated carbon with porous architecture for high-performance supercapacitors. Microporous Mesoporous Mater. 276, 280–291 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    Krishnan, S.G., Arulraj, A., Khalid, M., Reddy, M.V., Jose, R.: Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide. Renew. Sustain. Energy Rev. 141, 110798 (2021)

    CAS  Article  Google Scholar 

  36. 36.

    Dall’Agnese, Y., Rozier, P., Taberna, P.-L., Gogotsi, Y., Simon, P.: Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306, 510–515 (2016)

    Article  CAS  Google Scholar 

  37. 37.

    Mukherjee, S., Ren, Z., Singh, G.: Beyond graphene anode materials for emerging metal ion batteries and supercapacitors. Nano-Micro Lett. 10(4), 1–27 (2018)

    CAS  Article  Google Scholar 

  38. 38.

    Hu, M., Zhang, H., Hu, T., Fan, B., Wang, X., Li, Z.: Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49(18), 6666–6693 (2020)

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Sun, B., Zhang, Q., Zhang, C., Xu, W., Wang, J., Yuan, G., Lv, W., Li, X., Yang, N.: A passionfruit-like carbon-confined Cu2ZnSnS4 anode for ultralong-life sodium storage. Adv. Energy Mater. 11(17), 2100082 (2021)

    CAS  Article  Google Scholar 

  40. 40.

    Wang, Z., Tan, Y., Yang, Y., Zhao, X., Liu, Y., Niu, L., Tichnell, B., Kong, L., Kang, L., Liu, Z., Ran, F.: Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors. J. Power Sources 378, 499–510 (2018)

    CAS  Article  Google Scholar 

  41. 41.

    An, C., Zhang, Y., Guo, H., Wang, Y.: Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv. 1(12), 4644–4658 (2019)

    CAS  Article  Google Scholar 

  42. 42.

    Ma, H., Chen, Z., Gao, X., Liu, W., Zhu, H.: 3D hierarchically gold-nanoparticle-decorated porous carbon for high-performance supercapacitors. Sci. Rep. 9(1), 17065 (2019)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43.

    Zhai, Y., Dou, Y., Zhao, D., Fulvio, P.F., Mayes, R.T., Dai, S.: Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Supriya, S., Sriram, G., Ngaini, Z., Kavitha, C., Kurkuri, M., De Padova, I.P., Hegde, G.: The role of temperature on physical–chemical properties of green synthesized porous carbon nanoparticles. Waste Biomass Valoriz. 11, 3821–3831 (2020)

    CAS  Article  Google Scholar 

  45. 45.

    Fu, G., Li, Q., Ye, J., Han, J., Wang, J., Zhai, L., Zhu, Y.: Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. J. Mater. Sci. Mater.: Electron. 29(9), 7707–7717 (2018)

    CAS  Article  Google Scholar 

  46. 46.

    Dollimore, D., Spooner, P.: A single point method for evaluating the specific surface area of a solid from nitrogen adsorption isotherms. J. Appl. Chem. Biotechnol. 24(1–2), 35–41 (1974)

    CAS  Article  Google Scholar 

  47. 47.

    Lowell, S., Shields, J.E.: The single point BET method [13], Powder Surface Area and Porosity, pp. 30–34. Springer (1991)

    Google Scholar 

  48. 48.

    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    CAS  Article  Google Scholar 

  49. 49.

    Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Surface area analysis from the langmuir and bet theories, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, pp. 58–81. Springer (2004)

    Google Scholar 

  50. 50.

    Liu, L., Luo, X.-B., Ding, L., Luo, S.-L.: 4-application of nanotechnology in the removal of heavy metal from water. In: Luo, X., Deng, F. (eds.) Nanomaterials for the removal of pollutants and resource reutilization, pp. 83–147. Elsevier, Amsterdam (2019)

    Chapter  Google Scholar 

  51. 51.

    Patiha, E., Heraldy, Y., Hidayat, M.: Firdaus, The langmuir isotherm adsorption equation: The monolayer approach. IOP Conf. Ser. Mater. Sci. Eng. 107, 1–9 (2016)

    Article  Google Scholar 

  52. 52.

    Galarneau, A., Villemot, F., Rodriguez, J., Fajula, F., Coasne, B.: Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials. Langmuir 30(44), 13266–13274 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    Ertl, G., Knözinger, H., Weitkamp, J.: Handbook of heterogeneous catalysis. Wiley (1997)

    Book  Google Scholar 

  54. 54.

    Storck, S., Bretinger, H., Maier, W.F.: Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A: Gen. 174(1), 137–146 (1998)

    CAS  Article  Google Scholar 

  55. 55.

    Ali, G.A.M., Supriya, S., Chong, K.F., Shaaban, E.R., Algarni, H., Maiyalagan, T., Hegde, G.: Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Convers. Biorefin. 1–13 (2019)

  56. 56.

    Ramesh, K., Reddy, K.S., Rashmi, I., Biswas, A.K.: Porosity distribution, surface area, and morphology of synthetic potassium zeolites: A SEM and N2 adsorption study. Commun. Soil Sci. Plant Anal. 45(16), 2171–2181 (2014)

    CAS  Article  Google Scholar 

  57. 57.

    Gauden, P.A., Terzyk, A.P., Rychlicki, G., Kowalczyk, P., Ćwiertnia, M.S., Garbacz, J.K.: Estimating the pore size distribution of activated carbons from adsorption data of different adsorbates by various methods. J. Colloid Interface Sci. 273(1), 39–63 (2004)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Zhu, H.Y., Lu, G.Q., Maes, N., Vansant, E.F.: Pore structure characterisation of pillared clays using a modified MP method. J. Chem. Soc. Faraday Trans. 93(7), 1417–1423 (1997)

    CAS  Article  Google Scholar 

  59. 59.

    Bhat, V.S., Jayeoye, T.J., Rujiralai, T., Sirimahachai, U., Chong, K.F., Hegde, G.: Influence of surface properties on electro-chemical supercapacitors utilizing Callerya atropurpurea pod derived porous nanocarbons: Structure property relationship between porous structures to energy storage devices. Nano Select 1(2), 226–243 (2020)

    Article  Google Scholar 

  60. 60.

    Supriya, S., Ananthnag, G.S., Shetti, V.S., Nagaraja, B.M., Hegde, G.: Cost-effective bio-derived mesoporous carbon nanoparticles-supported palladium catalyst for nitroarene reduction and Suzuki-Miyaura coupling by microwave approach. Appl. Organomet. Chem. 34(3), e5384 (2020)

    CAS  Article  Google Scholar 

  61. 61.

    Bhat, V.S., Supriya, S., Hegde, G.: Biomass derived carbon materials for electrochemical sensors. J. Electrochem. Soc. 167(3), 037526 (2019)

    Article  Google Scholar 

  62. 62.

    Akshaya, K.B., Bhat, V.S., Varghese, A., George, L., Hegde, G.: Non-enzymatic electrochemical determination of progesterone using carbon nanospheres from onion peels coated on carbon fiber paper. J. Electrochem. Soc. 166(13), B1097–B1106 (2019)

    CAS  Article  Google Scholar 

  63. 63.

    Bhat, V.S., Hegde, G., Nasrollahzadeh, M.: A sustainable technique to solve growing energy demand: porous carbon nanoparticles as electrode materials for high-performance supercapacitors. J. Appl. Electrochem. 50, 1243–1255 (2020)

    CAS  Article  Google Scholar 

  64. 64.

    Bhat, V.S., Kanagavalli, P., Sriram, G., John, N.S., Veerapandian, M., Kurkuri, M., Hegde, G.: Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste. J. Energy Storage 32, 101829 (2020)

    Article  Google Scholar 

  65. 65.

    Sudhan, N., Subramani, K., Karnan, M., Ilayaraja, N., Sathish, M.: Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energ. Fuel. 31(1), 977–985 (2017)

    CAS  Article  Google Scholar 

Download references


Dr. Gurumurthy Hegde would like to thank AISTDF Secretariat, DST-SERB, ASEAN-Indian Collaborative research project, file number. IMRC/AISTDF/CRD/2018/000019 for funding this work.

Author information



Corresponding author

Correspondence to Gurumurthy Hegde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2611 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Supriya, S., Bhat, V.S., Jayeoye, T.J. et al. An investigation on temperature-dependant surface properties of porous carbon nanoparticles derived from biomass. J Nanostruct Chem (2021).

Download citation


  • Caesalpinia Sappan
  • Biomass
  • Carbon nanoparticles
  • Surface engineering
  • Microporous/mesoporous