Skip to main content

Advertisement

Log in

MEL zeolite nanosheet membranes for water purification: insights from molecular dynamics simulations

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

MEL-type zeolite was selected as a typical porous material to theoretically capture the purification scenario of a model landfill leachate comprising PbCl2 and CuCl2 varying the pressure (2.4–48 MPa). Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was applied to simulate the equilibrium state (0.5 ns) and dynamics of Pb2+, Cu2+ and Cl and water molecules (4 ns). Overall, the flux through the MEL membrane was increased by the increase of pressure. Lennard-Jones potential was used to explain non-bonded interactions between the membrane and ions as well as water molecules, in terms of values of energy and snapshots were taken from the evolution of purification phenomenon. The molecular patterns of accumulation of ions in the vicinity of zeolitic membrane were also captured as functions of the energies of the interaction between the contaminants and porous membrane. Mean square displacement (MSD) variation was indicative of the effect of pressure on dynamics of heavy metal separation; higher energies obtained at higher pressures, as reflected in alteration of van der Waals (vdW) force between ions and water molecules. The membrane revealed rejection above 70% for Pb2+, and almost 100% against Cu2+ and Cl, respectively. Density of water remained almost 1 g cm3, but depending on population of water molecules decreased after passage into the zeolite membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pruss-Ustun, A., World Health Organization: Safer Water, Better Health: Costs, Benefits and Sustainability of Interventions to Protect and Promote Health. World Health Organization, Geneva (2008)

    Google Scholar 

  2. Walser, T., Limbach, L.K., Brogioli, R., Erismann, E., Flamigni, L., Hattendorf, B., Juchli, M., Krumeich, F., Ludwig, C., Prikopsky, K., Rossier, M., Saner, D., Sigg, A., Hellweg, S., Gunther, D.: Stark WJ Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat. Nanotechnol. 7(8), 520–524 (2012). https://doi.org/10.1038/nnano.2012.64

    Article  CAS  PubMed  Google Scholar 

  3. Bagatin, R., Klemeš, J.J., Reverberi, A.P., Huisingh, D.: Conservation and improvements in water resource management: a global challenge. J. Clean. Prod. 77, 1–9 (2014)

    Article  Google Scholar 

  4. Kumar, P.S., Saravanan, A.: Sustainable waste water treatments in textile sector. In: Sustainable Fibres and Textiles, pp. 323–346. Elsevier, Amsterdam (2017)

    Chapter  Google Scholar 

  5. Dias, J.M., Alvim-Ferraz, M.C., Almeida, M.F., Rivera-Utrilla, J.: Sánchez-Polo M Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manag. 85(4), 833–846 (2007)

    Article  CAS  Google Scholar 

  6. Fu, F.: Wang Q Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 92(3), 407–418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  7. Noble, R.D.: An overview of membrane separations. Sep. Sci. Technol. 22(2–3), 731–743 (1987). https://doi.org/10.1080/01496398708068978

    Article  CAS  Google Scholar 

  8. Shahmoradi, A., Ghorbanzadeh Ahangari, M., Jahanshahi, M., Hamed, M.A.: Adsorption of hazardous atoms on the surface of TON zeolite and bilayer silica: A DFT study. J. Mol. Model. 26(6), 119 (2020). https://doi.org/10.1007/s00894-020-04381-w

    Article  CAS  PubMed  Google Scholar 

  9. Park, H.B., Kamcev, J., Robeson, L.M., Elimelech, M., Freeman, B.D.: Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356(6343), eaab0530 (2017). https://doi.org/10.1126/science.aab0530

    Article  CAS  PubMed  Google Scholar 

  10. Ambashta, R.D., Sillanpaa, M.E.: Membrane purification in radioactive waste management: A short review. J. Environ. Radioact. 105, 76–84 (2012). https://doi.org/10.1016/j.jenvrad.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Pendergast, M.M., Ghosh, A.K., Hoek, E.M.V.: Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination 308, 180–185 (2013). https://doi.org/10.1016/j.desal.2011.05.005

    Article  CAS  Google Scholar 

  12. Saravanan, V., Waijers, D., Ziari, M., Noordermeer, M.: Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications. Biochem. Eng. J. 49(1), 33–39 (2010)

    Article  CAS  Google Scholar 

  13. Eroglu, N., Emekci, M., Athanassiou, C.G.: Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 97(11), 3487–3499 (2017). https://doi.org/10.1002/jsfa.8312

    Article  CAS  PubMed  Google Scholar 

  14. Servatan, M., Zarrintaj, P., Mahmodi, G., Kim, S.-J., Ganjali, M.R., Saeb, M.R., Mozafari, M.: Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discov. Today 25, 642–656 (2020)

    Article  CAS  Google Scholar 

  15. Zarrintaj, P., Mahmodi, G., Manouchehri, S., Mashhadzadeh, A.H., Khodadadi, M., Servatan, M., Ganjali, M.R., Azambre, B., Kim, S.J., Ramsey, J.D., Habibzadeh, S., Saeb, M.R., Mozafari, M.: Zeolite in tissue engineering: Opportunities and challenges. MedComm 1(1), 5–34 (2020). https://doi.org/10.1002/mco2.5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khodadadi Yazdi, M., Zarrintaj, P., Hosseiniamoli, H., Mashhadzadeh, A.H., Saeb, M.R., Ramsey, J.D., Ganjali, M.R., Mozafari, M.: Zeolites for theranostic applications. J. Mater. Chem. B 8(28), 5992–6012 (2020). https://doi.org/10.1039/d0tb00719f

    Article  CAS  PubMed  Google Scholar 

  17. Ramaiah, K.P., Satyasri, D., Sridhar, S., Krishnaiah, A.: Removal of hazardous chlorinated VOCs from aqueous solutions using novel ZSM-5 loaded PDMS/PVDF composite membrane consisting of three hydrophobic layers. J. Hazard Mater. 261, 362–371 (2013). https://doi.org/10.1016/j.jhazmat.2013.07.048

    Article  CAS  PubMed  Google Scholar 

  18. Shirazi, L., Jamshidi, E., Ghasemi, M.R.: The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size. Cryst. Res. Technol. 43(12), 1300–1306 (2008). https://doi.org/10.1002/crat.200800149

    Article  CAS  Google Scholar 

  19. Munthali, M.W., Elsheikh, M.A., Johan, E., Proton, M.N.: Adsorption selectivity of zeolites in aqueous media: Effect of Si/Al ratio of zeolites. Molecules 19(12), 20468–20481 (2014). https://doi.org/10.3390/molecules191220468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, J., Zhu, H., Wu, Z., Qin, Z., Yan, L., Du, B., Fan, W., Wang, J.: High Si/Al ratio HZSM-5 zeolite: An efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene. Green Chem. 17(4), 2353–2357 (2015). https://doi.org/10.1039/c4gc02510e

    Article  CAS  Google Scholar 

  21. Gao, Y., Zheng, B., Wu, G., Ma, F., Liu, C.: Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization. RSC Adv. 6(87), 83581–83588 (2016). https://doi.org/10.1039/c6ra17084f

    Article  CAS  Google Scholar 

  22. Kokotailo, G., Chu, P., Lawton, S., Meier, W.: Synthesis and structure of synthetic zeolite ZSM-11. Nature 275(5676), 119–120 (1978)

    Article  CAS  Google Scholar 

  23. Saeb, M.R., Rastin, H., Nonahal, M., Ghaffari, M., Jannesari, A., Formela, K.: Cure kinetics of epoxy/MWCNTs nanocomposites: Nonisothermal calorimetric and rheokinetic techniques. J. Appl. Polym. Sci. 134(35), 45221 (2017)

    Article  Google Scholar 

  24. Dugkhuntod, P., Wattanakit, C.: A comprehensive review of the applications of hierarchical zeolite nanosheets and nanoparticle assemblies in light olefin production. Catalysts 10(2), 245 (2020)

    Article  CAS  Google Scholar 

  25. Yadav, M., Gupta, R., Sharma, R.K.: Green and sustainable pathways for wastewater purification. In: Advances in Water Purification Techniques, pp. 355–383. Elsevier, Amsterdam (2019)

    Chapter  Google Scholar 

  26. Landrigan, P.J., Fuller, R., Acosta, N.J.R., Adeyi, O., Arnold, R., Basu, N.N., Balde, A.B., Bertollini, R., Bose-O’Reilly, S., Boufford, J.I., Breysse, P.N., Chiles, T., Mahidol, C., Coll-Seck, A.M., Cropper, M.L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K.V., McTeer, M.A., Murray, C.J.L., Ndahimananjara, J.D., Perera, F., Potocnik, J., Preker, A.S., Ramesh, J., Rockstrom, J., Salinas, C., Samson, L.D., Sandilya, K., Sly, P.D., Smith, K.R., Steiner, A., Stewart, R.B., Suk, W.A., van Schayck, O.C.P., Yadama, G.N., Yumkella, K., Zhong, M.: The Lancet Commission on pollution and health. Lancet 391(10119), 462–512 (2018). https://doi.org/10.1016/S0140-6736(17)32345-0

    Article  PubMed  Google Scholar 

  27. Saeb, M.R., Mohammadi, Y., Ahmadi, M., Khorasani, M.M., Stadler, F.J.: A Monte Carlo-based feeding policy for tailoring microstructure of copolymer chains: Reconsidering the conventional metallocene catalyzed polymerization of α-olefins. Chem. Eng. J. 274, 169–180 (2015)

    Article  CAS  Google Scholar 

  28. Shahmoradi, A., Ghorbanzadeh Ahangari, M., Jahanshahi, M., Mirghoreishi, M., Fathi, E., Hamed, M.A.: A Removal of methylmercaptan pollution using Ni and Pt-decorated graphene: An ab-initio DFT study. J. Sulphur Chem. 41(6), 593–604 (2020). https://doi.org/10.1080/17415993.2020.1780236

    Article  CAS  Google Scholar 

  29. Hamed Mashhadzadeh, A., Fathalian, M., Ghorbanzadeh Ahangari, M., Shahavi, M.H.: DFT study of Ni, Cu, Cd and Ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide graphene-like structure. Mater. Chem. Phys. 220, 366–373 (2018). https://doi.org/10.1016/j.matchemphys.2018.09.016

    Article  CAS  Google Scholar 

  30. Hollingsworth, S.A., Dror, R.O.: Molecular dynamics simulation for all. Neuron 99(6), 1129–1143 (2018)

    Article  CAS  Google Scholar 

  31. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9(9), 646–652 (2002)

    Article  CAS  Google Scholar 

  32. Gómez-Álvarez, P., Ruiz-Salvador, A.R., Hamad, S., Calero, S.: Importance of blocking inaccessible voids on modeling zeolite adsorption: Revisited. J. Phys. Chem. C 121(8), 4462–4470 (2017). https://doi.org/10.1021/acs.jpcc.7b00031

    Article  CAS  Google Scholar 

  33. Demontis, P., Gulin-Gonzalez, J., Masia, M., Suffritti, G.B.: The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment. J. Phys. Condens. Matter 22(28), 284106 (2010). https://doi.org/10.1088/0953-8984/22/28/284106

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Y., Johnson, N.W., Liu, C., Chen, R., Zhong, M., Dong, Y., Mahendra, S.: Mechanisms of 1,4-dioxane biodegradation and adsorption by bio-zeolite in the presence of chlorinated solvents: Experimental and molecular dynamics simulation studies. Environ Sci Technol 53(24), 14538–14547 (2019). https://doi.org/10.1021/acs.est.9b04154

    Article  CAS  PubMed  Google Scholar 

  35. Jamali, S.H., Vlugt, T.J.H., Lin, L.-C.: Atomistic understanding of zeolite nanosheets for water desalination. J. Phys. Chem. C 121(21), 11273–11280 (2017). https://doi.org/10.1021/acs.jpcc.7b00214

    Article  CAS  Google Scholar 

  36. Rassoulinejad-Mousavi, S.M., Azamat, J., Khataee, A., Zhang, Y.: Molecular dynamics simulation of water purification using zeolite MFI nanosheets. Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2019.116080

    Article  Google Scholar 

  37. Ozcan, A., Perego, C., Salvalaglio, M., Parrinello, M., Yazaydin, O.: Concentration gradient driven molecular dynamics: a new method for simulations of membrane permeation and separation. Chem. Sci. 8(5), 3858–3865 (2017). https://doi.org/10.1039/c6sc04978h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu, L., Zhu, Y., Wu, X., Wang, S., Cao, W., Lu, X.: Adsorption of N-Butane/I-Butane in zeolites: simulation and theory study. Sep. Sci. Technol. 49(8), 1215–1226 (2014)

    Article  CAS  Google Scholar 

  39. Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. Proc. Math. Phys. Eng. 106(738), 463–477 (1924)

    CAS  Google Scholar 

  40. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991–7000 (1988). https://doi.org/10.1103/physrevb.37.6991

    Article  CAS  Google Scholar 

  41. Rassoulinejad-Mousavi, S.M., Azamat, J., Khataee, A., Zhang, Y.: Molecular dynamics simulation of water purification using zeolite MFI nanosheets. Sep. Purif. Technol. 234, 116080 (2020)

    Article  CAS  Google Scholar 

  42. Mohammadi, S., Heidari, M., Shahmoradi, B., Husseini, G.: Assessing landfill leachate heavy metal effect on the surface water quality: A case of Gheshlagh River, Sanandaj City, Iran. (2014)

  43. Maesen, T.L., Schenk, M., Vlugt, T., Smit, B.: Differences between MFI-and MEL-type zeolites in paraffin hydrocracking. J. Catal. 203(2), 281–291 (2001)

    Article  CAS  Google Scholar 

  44. Zhu, B., Kim, J.H., Na, Y.H., Moon, I.S., Connor, G., Maeda, S., Morris, G., Gray, S., Duke, M.: Temperature and pressure effects of desalination using a MFI-type zeolite membrane. Membranes (Basel) 3(3), 155–168 (2013). https://doi.org/10.3390/membranes3030155

    Article  CAS  Google Scholar 

  45. Chen, S., Ma, Y., Chen, L., Xian, K.: Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: Single-and multi-metal competitive adsorption study. Geochem. J. 44(3), 233–239 (2010)

    Article  CAS  Google Scholar 

  46. Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  47. Martínez, L., Andrade, R., Birgin, E.G., Martinez, J.M.: PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009)

    Article  Google Scholar 

  48. Mark, P., Nilsson, L.: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105(43), 9954–9960 (2001). https://doi.org/10.1021/jp003020w

    Article  CAS  Google Scholar 

  49. Meng, X., Huang, J.: Enhancement of water flow across a carbon nanotube. Mol. Simul. 42(3), 215–219 (2016)

    Article  Google Scholar 

  50. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)

    Article  CAS  Google Scholar 

  51. Thomas, M., Corry, B.: A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination. Philos. Trans. A 374(2060), 20150020 (2016)

    Article  Google Scholar 

  52. Tran, H., Winczewski, S.: Central-force decomposition of the Tersoff potential. TASK Q. (2017). https://doi.org/10.17466/tq2017/21.3/p

    Article  Google Scholar 

  53. Boldrin, L., Scarpa, F., Chowdhury, R., Adhikari, S.: Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22(50), 505702 (2011). https://doi.org/10.1088/0957-4484/22/50/505702

    Article  CAS  PubMed  Google Scholar 

  54. Emami, F.S., Puddu, V., Berry, R.J., Varshney, V., Patwardhan, S.V., Perry, C.C., Heinz, H.: Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chem. Mater. 26(8), 2647–2658 (2014)

    Article  CAS  Google Scholar 

  55. Adams, J.B.: Bonding Energy Models. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C. (eds.) Encyclopedia of Materials: Science and Technology, pp. 763–767. Elsevier, Oxford (2001). https://doi.org/10.1016/b0-08-043152-6/00146-7

    Chapter  Google Scholar 

  56. Delhommelle, J., Millie, P.: Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol Phys 99(8), 619–625 (2001). https://doi.org/10.1080/00268970010020041

    Article  CAS  Google Scholar 

  57. Sartbaeva, A., Wells, S.A., Treacy, M.M., Thorpe, M.F.: The flexibility window in zeolites. Nat. Mater. 5(12), 962–965 (2006). https://doi.org/10.1038/nmat1784

    Article  CAS  PubMed  Google Scholar 

  58. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. J. Chem Phys 98, 10089 (1993)

    Article  CAS  Google Scholar 

  59. Vatanpour, V., Khadem, S.S.M., Dehqan, A., Al-Naqshabandi, M.A., Ganjali, M.R., Hassani, S.S., Rashid, M.R., Saeb, M.R., Dizge, N.: Efficient removal of dyes and proteins by nitrogen-doped porous graphene blended polyethersulfone nanocomposite membranes. Chemosphere 263, 127892 (2021)

    Article  CAS  Google Scholar 

  60. Vatanpour, V., Mansourpanah, Y., Khadem, S.S.M., Zinadini, S., Dizge, N., Ganjali, M.R., Mirsadeghi, S., Rezapour, M., Saeb, M.R., Karimi-Male, H.: Nanostructured polyethersulfone nanocomposite membranes for dual protein and dye separation: Lower antifouling with lanthanum (III) vanadate nanosheets as a novel nanofiller. Poly. Test. 94, 107040 (2021)

    Article  CAS  Google Scholar 

  61. Azamat, J., Sardroodi, J.J.: Ion and water transport through (7, 7) and (8, 8) carbon and boron nitride nanotubes of different electric fields: a molecular dynamics simulation study. J. Comput. Theor. Nanosci. 11(12), 2611–2617 (2014)

    Article  CAS  Google Scholar 

  62. Shibuta, Y., Maruyama, S.: Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chem. Phys. Lett. 382(3–4), 381–386 (2003)

    Article  CAS  Google Scholar 

  63. Jafarzadeh, R., Azamat, J., Erfan-Niya, H.: Water desalination across functionalized silicon carbide nanosheet membranes: Insights from molecular simulations. Struct. Chem. 31(1), 293–303 (2020)

    Article  CAS  Google Scholar 

  64. Qiu, M., He, C.: Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer. J. Hazard Mater. 367, 339–347 (2019). https://doi.org/10.1016/j.jhazmat.2018.12.096

    Article  CAS  PubMed  Google Scholar 

  65. Baur, W., Fischer, R.: MEL. In: Zeolite-Type Crystal Structures and their Chemistry. Framework Type Codes LTA to RHO, pp. 1–11. Springer, Berlin (2006)

    Google Scholar 

  66. Ohkubo, T., Gin, S., Collin, M., Iwadate, Y.: Molecular dynamics simulation of water confinement in disordered aluminosilicate subnanopores. Sci. Rep. 8(1), 3761 (2018). https://doi.org/10.1038/s41598-018-22015-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Duan, M., Song, X., Zhao, S., Fang, S., Wang, F., Zhong, C., Luo, Z.: Layer-by-layer assembled film of asphaltenes/polyacrylamide and its stability of water-in-oil emulsions: a combined experimental and simulation study. J. Phys. Chem. C 121(8), 4332–4342 (2017)

    Article  CAS  Google Scholar 

  68. Khadem, S.S.M., Mashhadzadeh, A.H., Habibzadeh, S., Munir, M.T., Lima, E.C., Saeb, M.R.: A theoretical probe into the effects of material and operational variables on water purification with zeolite membranes. Micropor. Mesopor. Mat. 320, 111070 (2021)

    Article  Google Scholar 

  69. Saadat Tabrizi, N., Vahid, B., Azamat, J.: Functionalized single-atom thickness boron nitride membrane for separation of arsenite ion from water: A molecular dynamics simulation study. Phys. Chem. Res. 8(3), 843–856 (2020)

    Google Scholar 

  70. Zou, X., Zhu, G., Guo, H., Jing, X., Xu, D., Qiu, S.: Effective heavy metal removal through porous stainless-steel-net supported low siliceous zeolite ZSM-5 membrane. MICROPOR Mesopor. Mat. 124(1–3), 70–75 (2009). https://doi.org/10.1016/j.micromeso.2009.04.034

    Article  CAS  Google Scholar 

  71. Gupta, K.M., Zhang, K., Jiang, J.: Efficient removal of Pb2+ from aqueous solution by an ionic covalent-organic framework: Molecular simulation study. Ind. Eng. Chem. Res. 57(18), 6477–6482 (2018)

    Article  CAS  Google Scholar 

  72. Zhu, B., Hong, Z., Milne, N., Doherty, C.M., Zou, L., Lin, Y.S., Hill, A.J., Gu, X., Duke, M.: Desalination of seawater ion complexes by MFI-type zeolite membranes: Temperature and long term stability. J. Membr. Sci. 453, 126–135 (2014). https://doi.org/10.1016/j.memsci.2013.10.071

    Article  CAS  Google Scholar 

  73. Zhu, B., Myat, D.T., Shin, J.-W., Na, Y.-H., Moon, I.-S., Connor, G., Maeda, S., Morris, G., Gray, S., Duke, M.: Application of robust MFI-type zeolite membrane for desalination of saline wastewater. J. Membr. Sci. 475, 167–174 (2015). https://doi.org/10.1016/j.memsci.2014.09.058

    Article  CAS  Google Scholar 

  74. Vasanth, D., Pugazhenthi, G., Uppaluri, R.: Preparation, characterization, and performance evaluation of LTA zeolite–ceramic composite membrane by separation of BSA from aqueous solution. Sep. Sci. Technol. 52(4), 767–777 (2017). https://doi.org/10.1080/01496395.2016.1260142

    Article  CAS  Google Scholar 

  75. Vinoth Kumar, R., Ganesh Moorthy, I., Pugazhenthi, G.: Separation of BSA through FAU-type zeolite ceramic composite membrane formed on tubular ceramic support: Optimization of process parameters by hybrid response surface methodology and biobjective genetic algorithm. Prep. Biochem. Biotechnol. 47(7), 687–698 (2017). https://doi.org/10.1080/10826068.2017.1303608

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2020M2D8A206983011). Furthermore, the financial supports of the Basic Science Research Program (2017R1A2B3009135) through the National Research Foundation of Korea is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amin Hamed Mashhadzadeh, Mohammadreza Shokouhimehr or Rajender S. Varma.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi Khadem, S.S., Nasiriasayesh, A., Hamed Mashhadzadeh, A. et al. MEL zeolite nanosheet membranes for water purification: insights from molecular dynamics simulations. J Nanostruct Chem 12, 291–305 (2022). https://doi.org/10.1007/s40097-021-00419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00419-4

Keywords

Navigation