Engineering novel gold nanoparticles using Sageretia thea leaf extract and evaluation of their biological activities

Abstract

An eco-friendly method for biogenic synthesis of gold nanoparticles (AuNPs) was developed using leaf extract of Sageretia thea as a reducing, stabilizing, and capping agent. AuNPs synthesis was immediately confirmed from a color change in the gold solution from yellow to ruby red. UV–visible spectroscopy technique showed a sharp narrow peak at 535 nm that confirmed the presence of spherical and cubic-shaped nanoparticles. SEM and TEM analyses revealed that the average size of AuNPs was 36 and 13 nm, respectively. XRD revealed the pure crystalline nature of AuNPs. The sharp narrow peaks corresponding to (111), (200), (220), and (311) Bragg's planes at 2θ position denoted the cubic shape of AuNPs with a crystallite size of 18 nm. FTIR analysis showed the existence of various reducing metabolites, which capped over the surface of Au. The biological efficacy of AuNPs was tested against Klebsiella pneumonia, Staphylococcus aureus, and Bacillus subtilis. K. pneumonia was the most susceptible strain with an inhibition zone of 12 ± 0.2 mm (200 µg/mL dose), while the most tolerant strain was B. subtilis with a 6 ± 0.4 inhibition zone. The antioxidant potential was detected with DPPH scavenging activity, where the maximum scavenging activity was recorded at100 µg/mL. In analgesic activity, AuNPs showed superior efficiency as compared to leaf extract. The maximum latency time observed was 77.15 ± 0.39 s at a dose level of 300 mg/kg followed by 6.77 ± 0.30 s at 200 mg/kg, demonstrating 80.16% and 75.90% of analgesia, respectively. While diclofenac sodium was used as a standard with a latency time of 8.92 ± 0.32 s. The maximum metabolic activity of promastigote was seen at 150 µg/mL, which shows 91.21% lethality at 150 µg/mL with LD50 28.15, LD70 98.72, LD90 605.70, and 2.106 Chi-square values. In conclusion, the present findings demonstrate that AuNPs synthesized by plant extract might be applied as an alternative to synthetic drugs for different pathogenic diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Dung, T.T.N., Nam, V.N., Nhan, T.T., Ngoc, T.T.B., Minh, L.Q., Nga, B.T.T., Quang, D.V.: Silver nanoparticles as potential antiviral agents against African swine fever virus. Mater. Res. Express 6(12), 1250g9 (2020)

    Article  CAS  Google Scholar 

  2. 2.

    Mohammadi, L., Pal, K., Bilal, M., Rahdar, A., Fytianos, G., Kyzas, G.Z.: Green nanoparticles to treat patients from Malaria disease: an overview. J. Mol. Struct. 1229(19), 129857 (2020)

    Google Scholar 

  3. 3.

    Rahdar, A., Hajinezhad, M.R., Bilal, M., Askari, F., Kyzas, G.Z.: Behavioral effects of zinc oxide nanoparticles on the brain of rats. Inorg. Chem. Commun. 119, 108131 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    Samuel, M.S., Shah, S.S., Subramaniyan, V., Qureshi, T., Bhattacharya, J., Singh, N.D.P.: Preparation of graphene oxide/chitosan/ferrite nanocomposite for chromium(VI) removal from aqueous solution. Int. J. Biol. Macromol. 119, 540–547 (2018)

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Bouafia, A., Laouini, S.E.: Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha pulegium L.: Effect of ferric chloride concentration on the type of product. Mater. Lett. 265, 127364 (2020)

    CAS  Article  Google Scholar 

  6. 6.

    Bouafia, A., Laouini, S.E., Khelef, A., Tedjani, M.L., Guemari, F.: Effect of ferric chloride concentration on the type of magnetite (Fe3O4) nanoparticles biosynthesized by aqueous leaves extract of artemisia and assessment of their antioxidant activities. J. Clust. Sci. 32, 1–9 (2020)

    Google Scholar 

  7. 7.

    Castillo-Henríquez, L., Alfaro-Aguilar, K., Ugalde-Álvarez, J., Vega-Fernández, L., Montes de Oca-Vásquez, G., Vega-Baudrit, J.R.: Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 10(9), 1763 (2020)

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  8. 8.

    Bouafia, A., Laouini, S.E.: Plant-mediated synthesis of iron oxide nanoparticles and evaluation of the antimicrobial activity: a review. Mini Rev Org Chem. 17, 1–11 (2020)

    Article  Google Scholar 

  9. 9.

    Bouafia, A., Laouini, S.E., Ouahrani, M.R.: A review on green synthesis of CuO nanoparticles using plant extract and evaluation of the antimicrobial activity. Asian J. Chem. 13(1), 65–70 (2020)

    Article  Google Scholar 

  10. 10.

    Swaha, S., Patra, A., Bharti, A., Hussain, M.D.: Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinose T. Anders and their biological applications. Phys. E Low Dimens. Syst. Nanostruct. 121, 113830 (2020)

    Article  CAS  Google Scholar 

  11. 11.

    Rasheed, T., Nabeel, F., Bilal, M., Iqbal, H.M.: Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatal. Agric. Biotechnol. 19(2), 101154 (2019)

    Article  Google Scholar 

  12. 12.

    Bilal, M., Zhao, Y., Rasheed, T., Ahmed, I., Hassan, S.T., Nawaz, M.Z., Iqbal, H.: Biogenic nanoparticle-chitosan conjugates with antimicrobial, antibiofilm, and anticancer potentialities: development and characterization. Int. J. Environ. Res. Public Health 16(4), 598 (2019)

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  13. 13.

    Munir, H., Mumtaz, A., Rashid, R., Najeeb, J., Zubair, M.T., Munir, S., Cheng, H.: Eucalyptus camaldulensis gum as a green matrix to fabrication of zinc and silver nanoparticles: characterization and novel prospects as antimicrobial and dye-degrading agents. J. Mater. Res. Technol 9(6), 15513–15524 (2020)

    CAS  Article  Google Scholar 

  14. 14.

    Ain, Q.U., Munir, H., Jelani, F., Anjum, F., Bilal, M.: Antibacterial potential of biomaterial derived nanoparticles for drug delivery application. Mater. Res. Express 6(12), 125426 (2020)

    Article  CAS  Google Scholar 

  15. 15.

    Liu, P., Zhou, R., Yin, T., Wang, Q., Guo, Z., Qiwen, T., Li, X.: Novel bio-fabrication of silver nanoparticles using the cell-free extract of Lysinibacillus fusiformis sp. and their potent activity against pathogenic fungi. Mater. Res. Express 6(12), 1250f2 (2020)

    Article  CAS  Google Scholar 

  16. 16.

    Nayak, S., Bhat, M.P., Udayashankar, A.C., Lakshmeesha, T.R., Geetha, N.: Biosynthesis and characterization of Dillenia indica-mediated silver nanoparticles and their biological activity. Appl. Organomet. Chem. 34(4), e5567 (2020)

    CAS  Article  Google Scholar 

  17. 17.

    Qiao, J., Qiab, L.: Recent progress in plant-gold nanoparticles fabrication methods and bio-applications. Talanta 223(2), 121396 (2021)

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Roy, A., Bulut, O., Some, S., Mandal, A.K., Yilmaz, M.D.: Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 9(5), 2673–2702 (2019)

    CAS  Article  Google Scholar 

  19. 19.

    Rasheed, T., Bilal, M., Iqbal, H.M., Li, C.: Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf. B Biointerfaces 158, 408–415 (2017)

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Rasheed, T., Bilal, M., Li, C., Iqbal, H.: Biomedical potentialities of Taraxacum officinale-based nanoparticles biosynthesized using methanolic leaf extract. Curr. Pharm. Biotechnol. 18(14), 1116–1123 (2017)

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Rasheed, T., Bilal, M., Li, C., Nabeel, F., Khalid, M., Iqbal, H.M.: Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. J. Photochem. Photobiol. B 181, 44–52 (2018)

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Bilal, M., Rasheed, T., Iqbal, H.M., Li, C., Hu, H., Zhang, X.: Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int. J. Biol. Macromol. 105, 393–400 (2017)

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Gharehyakheh, S., Ahmeda, A., Haddadi, A., Jamshidi, M., Nowrozi, M., Zangeneh, M.M., Zangeneh, A.: Effect of gold nanoparticles synthesized using the aqueous extract of Satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157: H7 and Listeria monocytogenes in minced camel’s meat: the role of nanotechnology in the food industry. Appl. Organomet. Chem. 34, e5492 (2020)

    CAS  Article  Google Scholar 

  24. 24.

    Shah, S., Din, S., Khan, A., Ullah, R., Shah, S.A.: Green synthesis and antioxidant study of silver nanoparticles of root extract of Sageretia thea and its role in oxidation protection technology. J. Polym. Environ. 26(02), 2323–2332 (2017)

    Google Scholar 

  25. 25.

    Yin, J.J., Lao, F., Fu, P.P., Wamer, W.G., Zhao, Y., Wang, P.C., Qiu, Y., Sun, B., Xing, G., Dong, J., Liang, X.J., Chen, C.: The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerenes material. Biomaterials 30, 611–621 (2009)

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Braca, A., Tommasi, D., Bari, D.L., Pizza, C., Politi, M., Morelli, I.: Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod. 64, 892–895 (2001)

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Simon, J., Dayan, S.U., Bindiya, E.S., Bhat, G., Nampoori, V.P.N., Kailasnath, M.: Optical characterization and tunable antibacterial properties of gold nanoparticles with common proteins. Anal. Biochem. 612(1), 113975 (2021)

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Ahmad, N., Bhatnagar, S., Saxena, R., Iqbal, D., Ghosh, A.K., Dutta, R.: Biosynthesis and characterization of gold nanoparticles kinetics, in vitro and in vivo study. Mater. Sci. Eng. C 78, 553–554 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    Kumar, P., Shivam, P., Mandal, S., Prasanna, P., Kumar, S., Prasad, S.R., Kumar, A., Das, P., Ali, V., Singh, S.K., Mandal, D.: Synthesis, characterization, and mechanistic studies of a gold nanoparticle–amphotericin B covalent conjugate with enhanced antileishmanial efficacy and reduced cytotoxicity. Int. J. Nanomed. 14, 6073–6101 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    Shadab, M.D., Jha, B., Asad, M., Deepthi, M., Kamran, M., Ali, N.: Apoptosis-like cell death in Leishmania donovani treated with Kalsome TM10, a new liposomal amphotericin B. PLoS ONE 12(2), e0171306 (2017)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Rajeshkumar, S., Malarkodi, C., Gnanajobitha, G., Paulkumar, K., Vanaja, M., Kannan, C.: Seaweed mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J. Nanostruct. Chem. 3(44), 1–7 (2013)

    Google Scholar 

  32. 32.

    Balboa, E.M., Conde, E., Moure, A., Falqué, E., Domínguez, H.: In vitro antioxidant properties of crude extracts and compounds from brown algae. Food. Chem. 138, 1764–1785 (2013)

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Chung, S.K., Chen, C.Y., Blumberg, J.B.: Flavonoid-rich fraction from Sageretia theezans leaves scavenges reactive oxygen radical species and increases the resistance of low-density lipoprotein to oxidation. J. Med. Food. 12, 1310–1315 (2009)

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Doan, V., Huynh, B., Nguyen, T., Cao, X., Nguyen, V., Nguyen, T., Nguyen, H.T., Le, V.T.: Biosynthesis of silver and gold nanoparticles using aqueous extract of Codonopsis pilosula roots for antibacterial and catalytic applications. J. Nanomater. 2020, 1–8 (2020)

    Google Scholar 

  35. 35.

    Dzimitrowicz, A., Jamroz, P., Sergiel, I., Kozlecki, T., Pohl, P.: Preparation and characterization of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants and the effect of follow-up treatment with atmospheric pressure glow micro-discharge. Arab. J. Chem. 12(8), 4118–4130 (2019)

    CAS  Article  Google Scholar 

  36. 36.

    Ghafoor, D.A., Saod, W.M., Mohammed, N.: Green synthesis of gold nanoparticles using pineapple extract and study their analytical characterization and antibacterial activity. Syst. Rev. Pharm. 11(2), 462–465 (2020)

    CAS  Google Scholar 

  37. 37.

    Li, S., Al-Misned, F.A., El-Serehy, H.A., Yang, L.: Green synthesis of gold nanoparticles using aqueous extract of Mentha longifolia leaf and investigation of its anti-human breast carcinoma properties in the in vitro condition. Arab. J. Chem. 14, 1–14 (2020)

    CAS  Google Scholar 

  38. 38.

    Choudhary, B.C., Paul, D., Gupta, T., Tetgure, S.R., Garole, V.J., Borseand, A.U., Garole, D.J.: Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. J. Environ. Sci. 55, 236–246 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    Ahmed, A., Zangeneh, A., Zangeneh, M.M.: Green synthesis and chemical characterization of gold nanoparticle synthesized using Camellia sinensis leaf aqueous extract for the treatment of acute myeloid leukemia in comparison to daunorubicin in a leukemic mouse model. Appl. Organomet. Chem. 34(3), 1–13 (2020)

    Google Scholar 

  40. 40.

    Laid, M., Abdelhamid, K., Eddineand, L.S., Abderrhmane, B.: Optimizing the biosynthesis parameters of iron oxide nanoparticles using central composite design. J. Mol. Struct. 1229, 129497 (2021)

    CAS  Article  Google Scholar 

  41. 41.

    Akintelu, S.A., Folorunso, A.S., Ademosun, O.T.: Instrumental characterization and antibacterial investigation of silver nanoparticles synthesized from Garcinia kola leaf. J. Drug Deliv. Ther. 9(6), 58–64 (2019)

    CAS  Article  Google Scholar 

  42. 42.

    Akintelu, S.A., Yao, B., Folorunso, A.S.: Green synthesis, characterization, and antibacterial investigation of synthesized gold nanoparticles (AuNPs) from Garcinia kola pulp extract. Plasmonics 9(6–s), 58–64 (2020)

    CAS  Google Scholar 

  43. 43.

    Lei, W., Jianwei, X., Ye, Y., Han, L., Feng, L.: Synthesis of gold nanoparticles from leaf Panax notoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Artif. Cells Nanomed. Biotechnol. 1(47), 1216–1223 (2019)

    Google Scholar 

  44. 44.

    Biswa, A.K., Lenka, C., Panda, P.K., Yang, J., Misra, P.K.: Investigation of the functional and thermal properties of Mahua deoiled cake flour and its protein isolate for prospective food applications. LWT 137, 110459 (2021)

    Article  CAS  Google Scholar 

  45. 45.

    Hermans, N., Cos, P., Maes, L., De Bruyne, T., Vanden Berghe, D., Vlietinck, A.J., Pieters, L.: Challenges and pitfalls in antioxidant research. Curr. Med. Chem. 14(4), 417–430 (2007)

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    González-Ballesteros, N., Rodríguez-Argüelles, M.C., Lastra-Valdor, M., González-Mediero, G., Rey-Cao, S., Grimaldi, M., Cavazza, A., Bigi, F.: Synthesis of silver and gold nanoparticles by Sargassum muticum biomolecules and evaluation of their antioxidant activity and antibacterial properties. J. Nanostruct. Chem. 10, 317–330 (2020)

    Article  CAS  Google Scholar 

  47. 47.

    Pinteus, S., Silva, J., Alves, C., Horta, A., Fino, N., Rodrigues, A.I., Mendes, S., Pedrosa, R.: Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chem. 218, 591–599 (2017)

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    González-Ballesteros, N., Prado-López, S., Rodríguez-González, J.B., Lastra-Valdor, M., Rodríguez-Argüelles, M.C.: Green synthesis of gold nanoparticles using brown seaweed Cystoseira baccata: its activity in colon cancer cells. Colloids Surf. B 153, 190–198 (2017)

    Article  CAS  Google Scholar 

  49. 49.

    Abdullah, J.A.A., Eddine, L.S., Abderrhmane, B., Alonso-González, M., Guerrero, A., Romero, A.: Green synthesis and characterization of iron oxide nanoparticles by Pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustain. Chem. Pharm. 17, 100280 (2020)

    Article  Google Scholar 

  50. 50.

    Ullah, R., Shah, S., Muhammad, Z., Shah, S.A., Faisal, S., Khattak, U., Haq, T., Akbar, M.T.: Zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans. GPS 10(1), 101–111 (2021)

    Article  Google Scholar 

  51. 51.

    Alwan, H.A., Karam, M.A., Hashim, H.O., Hussein, F.H.: Synthesis and antibacterial activities of silver nanoparticles. Asian J. Chem. 31, 56–60 (2019)

    CAS  Article  Google Scholar 

  52. 52.

    Biswa, A.K., Misra, P.K.: Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields. Mater. Chem. Phys. 250, 123014 (2020)

    Article  CAS  Google Scholar 

  53. 53.

    Faisal, S., Jan, J., Shah, S.A., Shah, S., Khan, A., Akbar, M.T., Rizwan, M., Jan, F., Wajidullah, Akhtar, N., Khattak, A., Syed, S.: Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: their characterizations and biological and environmental applications. ACS Omega 6(14), 9709–9722 (2021)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Chiguvare, H., Oyedeji, O.O., Matewu, R., Aremu, O., Oyemitan, I.A., Oyedeji, A.O., Nkeh-Chungag, B.N., Songca, S.P., Mohan, S., Oluwafemi, O.S.: Synthesis of silver nanoparticles using Buchu plant extracts and their analgesic properties. Molecules 21, 774 (2016)

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  55. 55.

    Boyden, S.D., Hossain, I.N., Wohlfahrt, A., Lee, Y.C.: Non-inflammatory causes of pain in patients with rheumatoid arthritis. Curr. Rheumatol. Rep 18(6), 1–8 (2016)

    CAS  Article  Google Scholar 

  56. 56.

    Kim, S., Ryu, D.Y.: Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J. Appl. Toxicol. 33, 78–89 (2012)

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Shah, S., Din, S., Ullah, R.: Pharmacognostic standardization and FT-IR analysis of various parts of Sageretia thea. Int. J. Biosci. 3(3), 108–114 (2013)

    CAS  Article  Google Scholar 

  58. 58.

    Bruni, N., Stella, B., Giraudo, L., Pepa, C.D., Gastaldi, D., Dosio, F.: Nanostructured delivery systems with improved leishmanicidal activity: a critical review. Int. J. Nanomed. 12, 5289–5311 (2017)

    CAS  Article  Google Scholar 

  59. 59.

    Butkus, M.A., Labare, M.P., Starke, J.A., Moon, K., Talbot, M.: Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Appl. Environ. Microbiol. 70, 2848–2853 (2004)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the fellows of the Department of Biotechnology Bacha Khan University Charsadda and fellows of School of Engineering Brown University Providence Rhode Island USA.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nisar Ali or Muhammad Bilal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in any capacity, including financial and competing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, S., Shah, S.A., Faisal, S. et al. Engineering novel gold nanoparticles using Sageretia thea leaf extract and evaluation of their biological activities. J Nanostruct Chem (2021). https://doi.org/10.1007/s40097-021-00407-8

Download citation

Keywords

  • Nanotechnology
  • Gold nanoparticles
  • Sageretia thea
  • Characterization
  • Antibacterial
  • Antioxidant
  • Analgesic