Rapid removal and mechanism investigation of low-concentration phosphate from wastewater by CuFe2O4/MIL-101(Fe) composite

Abstract

Developing easily separable materials for efficient treatment of low-concentration phosphate which causes eutrophication of water bodies are full of challenges. A magnetic CuFe2O4/MIL-101(Fe) composite composed of hollow spheres CuFe2O4 and octahedrons MIL-101(Fe) was first fabricated via a facile solvothermal approach. CuFe2O4/MIL-101(Fe) (1.0 g·L−1) exhibited above 88.4% adsorption efficiency for low-concentration phosphate (5.0 mg·L−1) removal, over a wide pH ranging 2–12 at 293 K. Phosphate adsorption was a spontaneous endothermic process, in good association with Langmuir and pseudo-second-order kinetic model. The XPS and FT-IR analysis elucidated that electrostatic interaction and coordination exchange were main mechanisms. In addition, after four cycles, CuFe2O4/MIL-101(Fe) displayed 75.0% adsorption of phosphate, by treatment with external magnetic field separated and 0.1 mol·L–1 NaOH desorbed. Therefore, CuFe2O4/MIL-101(Fe) exhibited high selectivity and recycling for removing phosphate from wastewater.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Gong, Y.P., Ni, Z.Y., Xiong, Z.Z., Cheng, L.H., Xu, X.H.: Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation. Environ. Sci. Pollut. Res. 24, 8326–8335 (2017)

    CAS  Article  Google Scholar 

  2. 2.

    Heathwaite, L., Sharpley, A.N.: Evaluating measures to control the impact of agricultural phosphorus on water quality. Water Sci. Technol. 39, 149–155 (1999)

    CAS  Article  Google Scholar 

  3. 3.

    Li, Y., Xie, Q.Y., Hu, Q., Li, C.P., Huang, Z.J., Yang, X.J., Guo, H.: Surface modification of hollow magnetic Fe3O4@NH2-MIL-101(Fe) derived from metal-organic frameworks for enhanced selective removal of phosphates from aqueous solution. Sci. Rep. 6, 30651 (2016)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Qiao, G.J., Wang, Z.Q., Liu, C.G.: Effect of nitrogen and phosphorus cycling characteristic on eutrophication of water body. South-to-north Water Transfers and Water Sci. Technol. 8, 82–85 (2010)

  5. 5.

    Tanner, C.C., Sukias, J.P.S., Upsdell, M.P.: Substratum phosphorus accumulation during maturation of gravel-bed constructed wetlands. Water Sci. Technol. 40, 147–154 (1999)

    CAS  Article  Google Scholar 

  6. 6.

    Wei, T., Zhang, G.M., Long, Z.Q., Xian, G., Niu, L.J.: Advanced phosphate removal by La–Zr–Zn ternary oxide: performance and mechanism. J. Alloy. Compd. 817, 152745 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    Zhang, X.Z., Shen, J.Y., Ma, Y., Liu, L., Meng, R.J., Yao, J.M.: Highly efficient adsorption and recycle of phosphate from wastewater using flower-like layered double oxides and their potential as synergistic flame retardants. J. Colloid Interface Sci. 562, 578–588 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Yin, H., Kong, M.: Simultaneous removal of ammonium and phosphate from eutrophic waters using natural calcium-rich attapulgite-based versatile adsorbent. Desalination 351, 128–137 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    Gu, Y.J., Xia, H.G.: The application of adsorbent in the emergency treatment of water pollution emergencies. Intelligent City 6(14), 112–113 (2020)

    Google Scholar 

  10. 10.

    Shan, Y., Song, Y., Liu, Y., Liu, R., Du, J.: Zeng, P. Adsorption of berberine by polymeric resin H103: kinetics and thermodynamics. Environ. Earth Sci. 73(9), 4989–4994 (2015)

  11. 11.

    Xu, X.C., Song, C.S., Andrésen, J.M., Miller, B.G., Scaroni, A.W.: Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Micropor. Mesopor. Mat. 62(1–2), 29–45 (2003)

    CAS  Article  Google Scholar 

  12. 12.

    Gao, Y., Zhang, J., Su, Y., Wang, H., Wang, X.X., Huang, L.P., Yu, M., Ramakrishna, S., Long, Y.Z.: Recent progress and challenges in solution blow spinning. Mater. Horiz. 8(2), 426–446 (2021)

    CAS  Article  Google Scholar 

  13. 13.

    Ni, D.J., Zhang, J., Cao, Z.K., Li, R., Xu, T.F., Sang, H.W., Ramakrishna, S., Long, Y.Z.: Supersensitive and reusable perovskite nanocomposite fiber paper for time-resolved single-droplet detection. J. Hazard. Mater. 403, 123959 (2021)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Zhu, X.Y., Li, B., Yang, J., Li, Y.S., Zhao, W.R., Shi, J.L., Gu, J.L.: Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS Appl. Mater. Interfaces. 7, 223–231 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Min, X.Y., Wu, X., Shao, P.H., Ren, Z., Ding, L., Luo, X.B.: Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: Unusual doping of lanthanum by the reduction of coordination number. Chem. Eng. J. 358, 321–330 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    Wang, Y.J., Zhang, Y.N., Jiang, Z.Q., Jiang, G.Y., Zhao, Z., Wu, Q.H., Liu, Y., Xu, Q., Duan, A.J., Xu, C.M.: Controlled fabrication and enhanced visible-light photocatalytic hydrogen production of Au@CdS/MIL-101 heterostructure. Appl. Catal. B 185, 307–314 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    Dong, Y.N., Hua, T.D., Pudukudy, M., Su, H.Y., Jiang, L.H., Shan, S.Y., Jia, Q.M.: Influence of microwave-assisted synthesis on the structural and textural properties of mesoporous MIL-101(Fe) and NH2-MIL-101(Fe) for enhanced tetracycline adsorption. Mater Chem Phys. 251, 123060 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    Tian, H.L., Araya, T., Li, R.P., Fang, Y.F., Huang, Y.P.: Removal of MC-LR using the stable and efficient MIL-100/MIL-53(Fe) photocatalyst: The effect of coordinate immobilized layers. Appl. Catal. B 358, 321–330 (2019)

    Google Scholar 

  19. 19.

    Wang, N., Feng, J.T., Chen, J., Wang, J.N., Yan, W.: Adsorption mechanism of phosphate by polyaniline/TiO2 composite from wastewater. Chem. Eng. J. 316, 33–40 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    Xie, Q.Y., Li, Y., Lv, Z.L., Zhou, H., Yang, X.J., Chen, J., Guo, H.: Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101. Sci. Rep. 7, 1–15 (2017)

    Article  CAS  Google Scholar 

  21. 21.

    Liu, R.T., Chi, L.N., Wang, X.Z., Wang, Y., Sui, Y.M., Xie, T.T., Arandiyan, H.: Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs. Chem. Eng. J. 357, 159–168 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    Wang, J.H., Bi, L.J., Ji, Y.F., Ma, H.R., Yin, X.L.: Removal of humic acid from aqueous solution by magnetically separable polyaniline: adsorption behavior and mechanism. J. Colloid. Interface. Sci. 430, 140–146 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Ashour, R.M., El-Sayed, R., Abdel-Magied, A.F., Abdel-Khalek, A.A., Ali, M.M., Forsberg, K., Uheida, A., Muhammed, M., Dutta, J.: Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: kinetic and thermodynamic studies. Chem. Eng. J. 327, 286–296 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    Zhao, H.Y., Qian, L., Lv, H.L., Wang, Y.B., Zhao, G.H.: Introduction of a Fe3O4 core enhances the photocatalytic activity of MIL-100(Fe) with tunable shell thickness in the presence of H2O2. ChemCatChem 7, 4148–4155 (2015)

    CAS  Article  Google Scholar 

  25. 25.

    Yao, J.T., Chen, F.Y.: Phosphorus adsorption onto green synthesized nano-bimetal ferrites: equilibrium, kinetic and thermodynamic investigation. Chem. Eng. J. 251, 285–292 (2014)

    Article  CAS  Google Scholar 

  26. 26.

    He, Z.Q., Honeycutt, C.W.: A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphate. Commun. Soil Sci. Plant Anal. 36, 1373–1383 (2005)

    CAS  Article  Google Scholar 

  27. 27.

    Gao, Q., Sun, Z.Q.: Facile fabrication of uniform MFe2O4 (M = Co, Ni, Cu) hollow spheres and their recyclable superior catalytic activity towards 4-nitrophenol reduction. Nanosci. Nanotechnol 18, 5645–5653 (2018)

    CAS  Article  Google Scholar 

  28. 28.

    Maksimchuk, N.V., Kovalenko, K.A., Fedin, V.P., Kholdeeva, O.A.: Cyclohexane selective oxidation over metal-organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chem. Commun 48, 6812–6814 (2012)

    CAS  Article  Google Scholar 

  29. 29.

    Li, M., Lu, M.J., Yang, J.R., Xiao, J., Han, L.N., Zhang, Y.J., Bo, X.J.: Facile design of ultrafine CuFe2O4 nanocrystallines coupled porous carbon nanowires: highly effective electrocatalysts for hydrogen peroxide reduction and the oxygen evolution reaction. J. Alloy. Compd. 809, 151766 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    Chi, L., Xu, Q., Liang, X.Y., Wang, J.D., Su, X.T.: Iron-based metal-organic frameworks as catalysts for visible light-driven water oxidation. Small 12, 351–1358 (2016)

    Article  CAS  Google Scholar 

  31. 31.

    Lu, M.J., Li, L., Shen, S.Q., Chen, D., Han, W.: Highly efficient removal of Pb2+ by a sandwich structure of metal-organic framework/GO composite with enhanced stability. New J. Chem. 43, 1032–1037 (2019)

    CAS  Article  Google Scholar 

  32. 32.

    Li, R.B., Cai, M.X., Xie, Z.J., Zhang, Q.X., Zeng, Y.Q., Liu, H.J., Liu, G.G., Lv, W.Y.: Construction of heterostructured CuFe2O4/g–C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation. Appl. Catal. B: Environ. 244, 974–982 (2019)

    CAS  Article  Google Scholar 

  33. 33.

    Li, Z.C., Liu, X.M., Jin, W., Hu, Q.S., Zhao, Y.P.: Adsorption behavior of arsenicals on MIL-101(Fe): the role of arsenic chemical structures. J. Colloid. Interface. Sci. 554, 692–704 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Nirumand, L., Farhadi, S., Zabardasti, A., Khataee, A.: Copper ferrite nanoparticles supported on MIL-101/reduced graphene oxide as an efficient and recyclable sonocatalyst. J. Taiwan Inst. Chem. Eng. 93, 674–685 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    Li, Z.Y., Zhao, Y.J., Guan, Q., Liu, Q., Khan, S., Zhang, L.L., Wang, X.Z., Chen, L., Yang, X., Huo, M.X.: Novel direct dual Z-scheme AgBr(Ag)/MIL-101(Cr)/CuFe2O4 for efficient conversion of nitrate to nitrogen. Appl. Surf. Sci. 508, 145225 (2020)

    Article  CAS  Google Scholar 

  36. 36.

    Shi, W.M., Fu, Y.W., Jiang, W., Ye, Y.Y., Kang, J.X., Liu, D.Q., Ren, Y.Z., Li, D.S., Luo, C.G., Xu, Z.: Enhanced phosphate removal by zeolite loaded with Mg–Al–La ternary (hydr)oxides from aqueous solutions: performance and mechanism. Chem. Eng. J. 357, 33–44 (2019)

    CAS  Article  Google Scholar 

  37. 37.

    Wang, Y., Du, B.B., Wang, J.Y., Wang, Y., Gu, H.N., Zhang, X.D.: Synthesis and characterization of a high capacity ionic modified hydrogel adsorbent and its application in the removal of Cr(VI) from aqueous solution. J. Environ. Chem. Eng. 6, 6881–6890 (2018)

    CAS  Article  Google Scholar 

  38. 38.

    Liu, T., Zheng, S.R., Yang, L.Y.: Magnetic zirconium-based metal–organic frameworks for selective phosphate adsorption from water. J. Colloid. Interface. Sci. 552, 134–141 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Wu, W.J., Zhang, W.S., Kang, J.X., Li, B.J.: Facile synthesis of mesoporous Fe-based MOFs loading bismuth with high speed adsorption of iodide from solution. J. Solid. State. Chem. 269, 558–565 (2019)

    Article  CAS  Google Scholar 

  40. 40.

    Wang, J., Wu, L.Y., Li, J., Tang, D.D., Zhang, G.K.: Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: adsorption kinetics and mechanism. J. Alloy. Compd. 753, 422–432 (2018)

    CAS  Article  Google Scholar 

  41. 41.

    Chaari, I., Fakhfakh, E., Medhioub, M., Jamoussi, F.: Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. J. Mol. Struct. 1179, 672–677 (2019)

    CAS  Article  Google Scholar 

  42. 42.

    Awual, M.R., Jyo, A.: Assessing of phosphorus removal by polymeric anion exchangers. Desalination 281, 111–117 (2011)

    CAS  Article  Google Scholar 

  43. 43.

    Yang, Q., Wang, X.L., Luo, W., Sun, J., Xu, Q.X., Chen, F., Zhao, J.W., Wang, S.N., Yao, F.B., Wang, D.B., Li, X.M., Zeng, G.M.: Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresour. Technol. 247, 537–544 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Chen, M.L., Huo, C.B., Li, Y.K., Wang, J.H.: Selective adsorption and efficient removal of phosphate from aqueous medium with graphene-lanthanum composite. ACS. Sus. Chem. Eng. 4, 1296–1302 (2016)

    CAS  Article  Google Scholar 

  45. 45.

    He, J.J., Xu, Y.H., Wang, W., Hu, B., Wang, Z.J., Yang, X., Wang, Y., Yang, L.W.: Ce(III) nanocomposites by partial thermal decomposition of Ce-MOF for effective phosphate adsorption in a wide pH range. Chem. Eng. J. 379, 122431 (2020)

    CAS  Article  Google Scholar 

  46. 46.

    Hu, Y., Du, Y., Nie, G.Z., Zhu, T.J., Ding, Z.H., Wang, H.L., Zhang, L., Xu, Y.B.: Selective and efficient sequestration of phosphate from waters using reusable nano-Zr(IV) oxide impregnated agricultural residue anion exchanger. Sci. Total. Environ. 700, 134999 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Liu, H.L., Sun, X.F., Yin, C.G., Hu, C.: Removal of phosphate by mesoporous ZrO2. J. Hazard. Mater. 151, 616–622 (2008)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Awual, M.R., Jyo, A., El-Safty, S.A., Tamada, M., Seko, N.: A weak-base fibrous anion exchanger effective for rapid phosphate removal from water. J. Hazard. Mater. 188(1–3), 164–171 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Cui, Q.L., Jiao, G.J., Zheng, J.Y., Wang, T.T., Wu, G.L., Li, G.L.: Synthesis of a novel magnetic Caragana korshinskii biochar/Mg-Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions. RSC. Adv. 9, 18641–18651 (2019)

    CAS  Article  Google Scholar 

  50. 50.

    Xu, X., Gao, B.Y., Yue, Q.Y., Zhong, Q.Q.: Sorption of phosphate onto giant reed based adsorbent: FTIR, Raman spectrum analysis and dynamic sorption/desorption properties in filter bed. Bioresour. Technol. 102, 5278–5282 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Loganathan, P., Vigneswaran, S., Kandasamy, J., Bolan, N.S.: Removal and recovery of phosphate from water using sorption. Crit. Rev. Environ. Sci. Technol. 44, 847–907 (2014)

    CAS  Article  Google Scholar 

  52. 52.

    Genz, A., Kornmuller, A., Jekel, M.: Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminum oxide and granulated ferric hydroxide. Water. Res. 38, 3523–3530 (2004)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    He, X.S., Yang, D.P., Zhang, X.Y., Liu, M.H., Kang, Z.W., Lin, C.F., Jia, N.Q., Luque, R.: Waste eggshell membrane-templated CuO–ZnO nanocomposites with enhanced adsorption, catalysis and antibacterial properties for water purification. Chem. Eng. J. 369, 621–633 (2019)

    CAS  Article  Google Scholar 

  54. 54.

    Zhang, X.Y., He, X.S., Kang, Z.W., Cui, M.L., Yang, D.P., Luque, R.: Waste eggshell-derived dual-functional CuO/ZnO/Eggshell nanocomposites: (photo)catalytic reduction and antibacterial activities. Acs. Sus. Chem. Eng. 7(18), 15762–15771 (2019)

    CAS  Article  Google Scholar 

  55. 55.

    Wang, Y., Guo, W.L., Li, X.H.: Activation of persulfates by ferrocene–MIL-101(Fe) heterogeneous catalyst for degradation of bisphenol A. RSC. Adv. 8, 36477–36483 (2018)

    CAS  Article  Google Scholar 

  56. 56.

    Hu, H., Zhang, H.X., Chen, Y.J., Ou, H.S.: Enhanced photocatalysis using metal–organic framework MIL-101(Fe) for organophosphate degradation in water. Environ. Sci. Pollut. Res. 26, 24720–24732 (2019)

    CAS  Article  Google Scholar 

  57. 57.

    Gu, W., Li, X.D., Xing, M.C., Fang, W.K., Wu, D.Y.: Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III). Sci. Total Environ. 619, 42–48 (2018)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  58. 58.

    Zhang, L., Zhou, Q., Liu, J.Y., Chang, N., Wan, L.H., Chen, J.H.: Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber. Chem. Eng. J.185, 160–167 (2012)

  59. 59.

    Nehra, M., Dilbaghi, N., Singhal, N.K., Hassan, A.A., Kim, K., Kumar, S.: Metal organic frameworks MIL-100(Fe) as an efficient adsorptive material for phosphate management. Environ. Res. 169, 229–236 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 51478095, 41772236, and 51978133]. The Fundamental Research Funds for the Central Universities of China [grant number 2412018ZD016, 2412019FZ021, and 2412019QD009]. Finally, the authors acknowledge Rachel Benham who works in writing center of Northeast Normal University for polishing the language.

Author information

Affiliations

Authors

Contributions

QL: data curation and writing—original draft. SSL: conceptualization and review. SK: writing—review and editing. YJZ: software and formal analysis. QG: software and methodology. ZG, YNG, and LC: editing and methodology. XY: conceptualization, writing—review and editing, and funding acquisition.

Corresponding author

Correspondence to Xia Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 824 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Lin, S., Khan, S. et al. Rapid removal and mechanism investigation of low-concentration phosphate from wastewater by CuFe2O4/MIL-101(Fe) composite. J Nanostruct Chem (2021). https://doi.org/10.1007/s40097-021-00406-9

Download citation

Keywords

  • Low-concentration
  • Phosphate
  • Adsorption
  • CuFe2O4/MIL-101(Fe)
  • Mechanism