Functionalization of selenium nanoparticles using the methanolic extract of Cirsium setidens and its antibacterial, antioxidant, and cytotoxicity activities

Abstract

Selenium (Se) is a noble mineral that prevents oxidative stress and regulates metabolism by balancing the level of antioxidants in human body. The present work was the first time report of the comparative analysis of bioactivities of selenium nanoparticles (CS-SeNPs and AA-SeNPs) synthesized by Cirsium setidens extracts (CSE) and ascorbic acid (AA), respectively. The CS-SeNPs exhibited an average particle size of 117.8 nm with PDI of 0.162 and zeta potential of − 27.4 mV while average particle size of 108.9 nm with PDI 0.062 and zeta potential of − 32.4 mV for AA-SeNPs. FTIR analysis indicated the surface capping of phyto-compounds of CSE on CS-SeNPs while AA-SeNPs exhibited the functional groups corresponding to AA. The CS-SeNPs exhibited higher DPPH, ABTS, and antibacterial activities than CSE but less than AA-SeNPs. Moreover, both nanoparticles were nontoxic to normal fibroblast cell line (NIH3T3), but cytotoxic to human lung cancer cell line (A549). This work concluded that CS-SeNPs is promising in inhibition of A549 cell line proliferation through damaging the nucleus and mitochondrial membrane.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Moghimi, S.M., Hunter, A.C., Murray, J.C.: Nanomedicine: current status and future prospects. FASEB J 19(3), 311–330 (2005)

    CAS  Article  Google Scholar 

  2. 2.

    Majeed, M., Badmaev, V.: Selenium, an essential element in human and animal nutrition in health and disease. NutraCos Nutraceuticals, 6–8 (2005)

  3. 3.

    Rayman, M.P.: Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64(4), 527–542 (2005)

    CAS  Article  Google Scholar 

  4. 4.

    Zeng, H., Combs, G.F., Jr.: Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J Nutr Biochem 19(1), 1–7 (2008)

    Article  Google Scholar 

  5. 5.

    Boroumand, S., Safari, M., Shaabani, E., Shirzad, M., Faridi-Majidi, R.: Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater Res Express 8(2), 43–70 (2019). https://doi.org/10.1088/2053-1591/ab2558

    CAS  Article  Google Scholar 

  6. 6.

    Shakibaie, M., Forootanfar, H., Golkari, Y., Mohammadi-Khorsand, T., Shakibaie, M.R.: Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol 29, 235–241 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    Toubhans, B., Gazze, S.A., Bissardon, C., Bohic, S., Gourlan, A.T., Gonzalez, D., Charlet, L., Conlan, R.S., Francis, L.W.: Selenium nanoparticles trigger alterations in ovarian cancer cell biomechanics. Nanomedicine (2020). https://doi.org/10.1016/j.nano.2020.102258

    Article  PubMed  Google Scholar 

  8. 8.

    Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., Baron, M., Melcova, M., Opatrilova, R., Zidkova, J., Bjørklund, G., Sochor, J., Kizek, R.: Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomed 13, 2107–2128 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    Chen, F., Zhang, X.H., Hu, X.D., Liu, P.D., Zhang, H.Q.: The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. Artif Cells Nanomed B 46(5), 937–948 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    Wang, H., Zhang, J., Yu, H.: Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42(10), 1524–1533 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    Vinković Vrček, I.: Selenium nanoparticles: biomedical applications. In: Michalke, B. (ed.) Selenium, pp. 393–412. Springer International Publishing, Cham (2018)

    Google Scholar 

  12. 12.

    Menon, S., Shrudhi Devi, K.S., Santhiya, R., Rajeshkumar, S., Venkat Kumar, S.: Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B 170, 280–292 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    Jeong, G.H., Park, E.K., Kim, T.H.: New anti-glycative flavonoids from Cirsium setidens with potent radical scavenging activities. Phytochem Lett 26, 115–119 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    Lee, J.H., Jung, H.K., Han, Y.-S., Yoon, Y.M., Yun, C.W., Sun, H.Y., Cho, H.W., Lee, S.H.: Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep 14(4), 3777–3784 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    Nugroho, A., Kim, M.H., Lim, S.C., Choi, J., Choi, J.S., Park, H.J.: Validation of high-performance liquid chromatography analysis on phenolic substances of Cirsium Setidens and sedative effect of pectolinarin as the active principle. Nat Prod Sci 17, 342–349 (2011)

    CAS  Google Scholar 

  16. 16.

    Guo, H.F., Wang, M.H.: Impact of drying method on antioxidant, anti-diabetic, and anti-proliferation activities of Cirsium setidens in vitro. Acta Aliment 47(1), 44–51 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    Vahdati, M., Tohidi Moghadam, T.: Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci Rep 10(1), 510 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    Duan, X.J., Zhang, W.W., Li, X.M., Wang, B.G.: Evaluation of antioxidant property of extract and fractions obtained from a red alga Polysiphonia urceolata. Food Chem 95(1), 37–43 (2006)

    CAS  Article  Google Scholar 

  19. 19.

    Brumfitt, W., Hamilton-Miller, J.M.T., Franklin, I.: Antibiotic activity of natural products: 1. Propolis Microbios 62(250), 19–22 (1990)

    CAS  PubMed  Google Scholar 

  20. 20.

    Gopinath, V., Priyadarshini, S., Al-Maleki, A.R., Alagiri, M., Yahya, R., Saravanan, S., Vadivelu, J.: In vitro toxicity, apoptosis and antimicrobial effects of phyto-mediated copper oxide nanoparticles. RSC Adv 6(112), 110986–110995 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    Saravanakumar, K., Vivek, R., Sithranga Boopathy, N., Yaqian, L., Kathiresan, K., Chen, J.: Anticancer potential of bioactive 16-methylheptadecanoic acid methyl ester derived from marine Trichoderma. J Appl Biomed 13(3), 199–212 (2015)

    Article  Google Scholar 

  22. 22.

    Saravanakumar, K., Wang, M.H.: Biogenic silver embedded magnesium oxide nanoparticles induce the cytotoxicity in human prostate cancer cells. Adv Powder Technol 30(4), 786–794 (2019)

    CAS  Article  Google Scholar 

  23. 23.

    Jigyasu, A.K., Siddiqui, S., Lohani, M., Khan, I.A., Arshad, M.: Chemically synthesized CDSE quantum dots inhibit growth of human lung carcinoma cells via ROS generation. Excli J 15, 54–63 (2016)

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Sakthivel, R., Malar, D.S., Devi, K.P.: Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential. Biomed Pharmacother 105, 742–752 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    Menon, S., Agarwal, K.S., Shanmugam, V.K.: Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid Interfac Sci Commun 29, 1–8 (2019)

    CAS  Article  Google Scholar 

  26. 26.

    Bartůněk, V., Junková, J., Babuněk, M., Ulbrich, P., Kuchař, M., Sofer, Z.: Synthesis of spherical amorphous selenium nano and microparticles with tunable sizes. Micro Nano Lett 11(2), 91–93 (2016)

    Article  Google Scholar 

  27. 27.

    Zeebaree, S.Y.S., Zeebaree, A.Y.S., Zebari, O.I.H.: Diagnosis of the multiple effect of selenium nanoparticles decorated by Asteriscus graveolens components in inhibiting HepG2 cell proliferation. Sustain Chem Pharm 15, 100210 (2020)

    Article  Google Scholar 

  28. 28.

    Gangadoo, S., Stanley, D., Hughes, R.J., Moore, R.J., Chapman, J.: The synthesis and characterisation of highly stable and reproducible selenium nanoparticles. Inorg Nano-Met Chem 47(11), 1568–1576 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    Fesharaki, P.J., Nazari, P., Shakibaie, M., Rezaie, S., Banoee, M., Abdollahi, M., Shahverdi, A.R.: Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41, 461–466 (2010)

    CAS  Article  Google Scholar 

  30. 30.

    Anu, K., Devanesan, S., Prasanth, R., AlSalhi, M.S., Ajithkumar, S., Singaravelu, G.: Biogenesis of selenium nanoparticles and their anti-leukemia activity. J King Saud Univ Sci 32(4), 2520–2526 (2020)

    Article  Google Scholar 

  31. 31.

    Kokila, K., Elavarasan, N., Sujatha, V.: Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J Chem 41(15), 7481–7490 (2017)

    CAS  Article  Google Scholar 

  32. 32.

    Gole, A., Dash, C., Ramakrishnan, V., Sainkar, S.R., Mandale, A.B., Rao, M., Sastry, M.: Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17(5), 1674–1679 (2001)

    CAS  Article  Google Scholar 

  33. 33.

    Li, S., Shen, Y., Xie, A., Yu, X., Zhang, X., Yang, L., Li, C.: Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotechnology 18(40), 405101 (2007)

    Article  Google Scholar 

  34. 34.

    Eaton, P., Quaresma, P., Soares, C., Neves, C., de Almeida, M.P., Pereira, E., West, P.: A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy 182, 179–190 (2017)

    CAS  Article  Google Scholar 

  35. 35.

    Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., Hoekstra, W.G.: Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073), 588–590 (1973)

    CAS  Article  Google Scholar 

  36. 36.

    Gunti, L., Dass, R.S., Kalagatur, N.K.: Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front Microbiol (2019). https://doi.org/10.3389/fmicb.2019.00931

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Spallholz, J.E.: On the nature of selenium toxicity and carcinostatic activity. Free Radical Bio Med 17(1), 45–64 (1994)

    CAS  Article  Google Scholar 

  38. 38.

    Zonaro, E., Lampis, S., Turner, R.J., Qazi, S.J.S., Vallini, G.: Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol (2015). https://doi.org/10.3389/fmicb.2015.00584

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Bisht, G., Rayamajhi, S., Kc, B., Paudel, S.N., Karna, D., Shrestha, B.G.: Synthesis, characterization, and study of in vitro cytotoxicity of ZnO-Fe3O4 magnetic composite nanoparticles in human breast cancer cell line (MDA-MB-231) and mouse fibroblast (NIH 3T3). Nanoscale Res Lett 11(1), 537–537 (2016)

    Article  Google Scholar 

  40. 40.

    Oliveira, M.F., Lemos, T.G., de Mattos, M.C., Segundo, T.A., Santiago, G.M., Braz-Filho, R.: New enamine derivatives of lapachol and biological activity. Acad Bras Cienc 74(2), 211–221 (2002)

    CAS  Article  Google Scholar 

  41. 41.

    Cui, D., Yan, C., Miao, J., Zhang, X., Chen, J., Sun, L., Meng, L., Liang, T., Li, Q.: Synthesis, characterization and antitumor properties of selenium nanoparticles coupling with ferulic acid. Mater Sci Eng C 90, 104–112 (2018)

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2017H1D3A1A01052610) and National Research Foundation of Korea (2019R1A1055452).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Myeong-Hyeon Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2553 KB)

Supplementary file2 (DOC 151 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shin, S., Saravanakumar, K., Mariadoss, A.V.A. et al. Functionalization of selenium nanoparticles using the methanolic extract of Cirsium setidens and its antibacterial, antioxidant, and cytotoxicity activities. J Nanostruct Chem (2021). https://doi.org/10.1007/s40097-021-00397-7

Download citation

Keywords

  • Antibacterial
  • Antioxidant
  • Cirsium setidens
  • Cytotoxicity
  • Selenium