Biosynthesis and characterization of silver nanoparticles for the removal of amoxicillin from aqueous solutions using Oenothera biennis water extract

Abstract

Oenothera biennis water extract was used to perform green nano-biosynthesis of silver nanoparticles (AgNPs) for the removal of amoxicillin (AMX) from water. Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and energy-dispersive analysis of X-rays were used to approve the synthesis of AgNPs. The average size of AgNPs was determined as 8.10 nm. Antibacterial activities of Staphylococcus aureus and Escherichia coli were also assessed, and the maximum inhibition zones for them were obtained as 19 and 16 mm, respectively. Experimental factors, including contact time, pH, AgNPs dosage, and initial concentration of AMX were investigated. AMX removal efficiency of 97.27% was achieved under the contact time of 30 min, pH 4, adsorbent dosage of 0.5 g, and drug concentration of 30 mg L−1. Evaluation of the isotherm models showed that the adsorption process followed the Langmuir model (R2 = 0.9944) with qmax = 101.01 mg g−1. Moreover, the kinetic studies indicated that the adsorption procedure fitted the pseudo-second-order model with R2 = 0.9997.

Graphic abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Ren, L., Zhou, D., Wang, J., Zhang, T., Peng, Y., Chen, G.: Biomaterial-based flower-like MnO2@ carbon microspheres for rapid adsorption of amoxicillin from wastewater. J. Mol. Liq. 309, 113074 (2020)

    CAS  Article  Google Scholar 

  2. 2.

    Marimuthu, S., Jayanthi Antonisamy, A., Malayandi, S., Rajendran, K., Tsai, P., Pugazhendhi, A., Kumar Ponnusamy, V.: Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J. Photochem. Photobiol. B Biol. 205, 111823 (2020)

    CAS  Article  Google Scholar 

  3. 3.

    Singh, J., Kumar, V., Singh Jolly, S., Kim, K., Rawat, M., Kukkar, D., Fai Tsang, Y.: Biogenic synthesis of silver nanoparticles and its photocatalytic applications for removal of organic pollutants in water. J. Ind. Eng. Chem. 80, 247–257 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    Matsubara, M.E., Helwig, K., Hunter, C., Roberts, J., Subtil, E.L., Gomes Coelho, L.H.: Amoxicillin removal by pre-denitrification membrane bioreactor (A/OMBR): performance evaluation, degradation by-products, and antibiotic resistant bacteria. Ecotoxicol. Environ. Saf. 192, 110258 (2020)

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Chaba, J.M., Nomngongo, P.N.: Effective adsorptive removal of amoxicillin from aqueous solutions and wastewater samples using zinc oxide coated carbon nanofiber composite. Emerg. Contam. 5, 143–149 (2019)

    Article  Google Scholar 

  6. 6.

    Olama, N., Dehghani, M., Malakootian, M.: The removal of amoxicillin from aquatic solutions using the TiO2/UV-C nanophotocatalytic method doped with trivalent iron. Appl. Water Sci. 8, 97 (2018)

    Article  CAS  Google Scholar 

  7. 7.

    Li, M., Zeng, Z., Li, Y., Arowo, M., Chen, J., Meng, H., Shao, L.: Treatment of amoxicillin by O3/Fenton process in a rotating packed bed. J. Environ. Manag. 150, 404–411 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    Weng, X., Cai, W., Lan, R., Sun, Q., Chen, Z.: Simultaneous removal of amoxicillin, ampicillin and penicillin by clay supported Fe/Ni bimetallic nanoparticles. Environ. Pollut. 236, 562–569 (2018)

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Yaghmaeian, K., Moussavi, G., Alahabadi, A.: Removal of amoxicillin from contaminated water using NH4Cl-activated carbon: continuous flow fixed-bed adsorption and catalytic ozonation regeneration. Chem. Eng. J. 236, 538–544 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    Li, H., Hu, J., Wang, C., Wang, X.: Removal of amoxicillin in aqueous solution by a novel chicken feather carbon: kinetic and equilibrium studies. Water Air Soil Pollut. 228, 201 (2017)

    Article  CAS  Google Scholar 

  11. 11.

    Alsager, O.A., Alnajrani, M.N., Abuelizz, H.A., Aldaghmani, I.A.: Removal of antibiotics from water and waste milk by ozonation: kinetics, byproducts, and antimicrobial activity. Ecotoxicol. Environ. Saf. 158, 114–122 (2018)

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Kwarciak-Kozłowska, A.: Removal of pharmaceuticals and personal care products by ozonation, advance oxidation processes, and membrane separation, Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. Emerging Contaminants and Micro Pollutants, Chapter 7, pp.151–171 (2019)

  13. 13.

    Kidak, R., Dogan, S.: Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water. Ultrason. Sonochem. 40, 131–139 (2018)

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Bian, X., Xia, Y., Zhan, T., Wang, L., Zhou, W., Dai, Q., Chen, J.: Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode: electrode characterization, operational parameters optimization and degradation mechanism. Chemosphere 233, 762–770 (2019)

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Zaied, B.K., Rashid, M., Nasrullah, M., Zularisam, A.W., Pant, D., Singh, L.: A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Sci. Total Environ. 726, 138095 (2020)

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Baran, W., Adamek, E., Jajko, M., Sobczak, A.: Removal of veterinary antibiotics from wastewater by electrocoagulation. Chemosphere 194, 381–389 (2018)

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Shang, Zh., Hu, Zh., Huang, L., Guo, Z., Liu, H., Zhang, Ch.: Removal of amoxicillin from aqueous solution by zinc acetate modified activated carbon derived from reed. Powder Technol. 368, 178–189 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    Liu, H., Hu, Zh., Liu, H., Xie, H., Lu, S., Wang, Q., Zhang, J.: Adsorption of amoxicillin by Mn-impregnated activated carbons: performance and mechanisms. RSC Adv. 6, 11454–11460 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    Ramos Lima, D., Lima, E.C., Umpierres, C.S., et al.: Removal of amoxicillin from simulated hospital effluents by adsorption using activated carbons prepared from capsules of cashew of Para. Environ. Sci. Pollut. Res. 26, 16396–16408 (2019)

    Article  CAS  Google Scholar 

  20. 20.

    Yazidi, A., Atrous, M., Edi Soetaredjo, F., Sellaoui, L., Ismadji, S., Erto, A., Bonilla-Petriciolet, A., Dotto, G.L., Ben Lamine, A.: Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: experimental study and modeling analysis. Chem. Eng. J. 379, 122320 (2020)

    CAS  Article  Google Scholar 

  21. 21.

    Pouretedal, H.R., Sadegh, N.: Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process. Eng. 1, 64–73 (2014)

    Article  Google Scholar 

  22. 22.

    Mojiri, A., Vakili, M., Farraji, H., Qarani Aziz, S.: Combined ozone oxidation process and adsorption methods for the removal of acetaminophen and amoxicillin from aqueous solution; kinetic and optimization. Environ. Technol. Innov. 15, 100404 (2019)

    Article  Google Scholar 

  23. 23.

    Moradi, S.E.: Highly efficient removal of amoxicillin from water by magnetic graphene oxide adsorbent. Chem. Bull. Politeh. Univ. Timis. Romania 60, 41–48 (2015)

    CAS  Google Scholar 

  24. 24.

    Balarak, D., Kord Mostafapour, F., Akbari, H., Joghtaei, A.: Adsorption of amoxicillin antibiotic from pharmaceutical wastewater by activated carbon prepared from Azolla filiculoides. J. Pharm. Res. Int. 18, 1–13 (2017)

    Article  Google Scholar 

  25. 25.

    Shanmuganathan, R., Karuppusamy, I., Saravanan, M., Muthukumar, H., Ponnuchamy, K., Sri Ramkumar, V., Pugazhendhi, A.: Synthesis of silver nanoparticles and their biomedical applications—a comprehensive review. Curr. Pharm. Des. 25, 2650–2660 (2019)

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Vasantharaj, S., Sathiyavimal, S., Saravanan, M., Senthilkumar, P., Kavitha, G., Shanmugavel, M., Manikandan, E., Pugazhendhi, A.: Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J. Photochem. Photobiol. B Biol. 191, 143–149 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    Hassan, S.S.M., Abdel-Shafy, H.I., Mansour, M.S.M.: Removal of pharmaceutical compounds from urine via chemical coagulation by green synthesized ZnO nanoparticles followed by microfiltration for safe reuse. Arab. J. Chem. 12, 4074–4083 (2019)

    CAS  Article  Google Scholar 

  28. 28.

    Hemlata, Raj Meena, P., Pratap Singh, A., Tejavath, K.K.: Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 5, 5520–5528 (2020)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Shanmuganathan, R., MubarakAli, D., Prabakar, D., Muthukumar, H., Thajuddin, N., Kumar, S., Pugazhendhi, A.: An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ. Sci. Pollut. Res. 25, 10362–10370 (2018)

    CAS  Article  Google Scholar 

  30. 30.

    Roosta, M., Ghaedi, M., Shokri, N., Daneshfar, A., Sahraei, R., Asghari, A.: Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design. Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 55–65 (2014)

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Prasher, P., Sharma, M., Mudila, H., et al.: Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloids Interface Sci. Commun. 35, 100244 (2020)

    CAS  Article  Google Scholar 

  32. 32.

    Shahnaza, M., Danish, M., Bin Ismail, M.H., Tahir Ansari, M., Mohamad Ibrahim, M.N.: Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line-in vitro study. Sustain. Chem. Pharm. 14, 100179 (2019)

    Article  Google Scholar 

  33. 33.

    Tang, S., Zheng, J.: Antibacterial activity of silver nanoparticles: structural effects. Adv. Healthc. Mater. 7, 1701503 (2018)

    Article  CAS  Google Scholar 

  34. 34.

    Tripathi, D., Modi, A., Narayan, G., Pandey Rai, S.: Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater. Sci. Eng. C 100, 152–164 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    Benakashani, F., Allafchian, A.R., Jalali, S.A.H.: Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala Int. J. Mod. Sci. 2, 251–258 (2016)

    Article  Google Scholar 

  36. 36.

    Saravanan, M., Kumar Barik, S., MubarakAli, D., Prakash, P., Pugazhendhi, A.: Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog. 116, 221–226 (2018)

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Lin, S., Huang, R., Cheng, Y., Liu, J., Lau, B.L.T., Wiesner, M.R.: Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Res. 47, 3959–3965 (2013)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., Mohan, N.: Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloid Surf. B 76, 50–56 (2010)

    CAS  Article  Google Scholar 

  39. 39.

    González-Ballesteros, N., Rodríguez-Argüelles, M.C., Lastra-Valdor, M., et al.: Synthesis of silver and gold nanoparticles by Sargassum muticum biomolecules and evaluation of their antioxidant activity and antibacterial properties. J. Nanostruct. Chem. 10, 317–330 (2020)

    Article  Google Scholar 

  40. 40.

    Gudikandula, K., Charya Maringanti, S.: Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J. Exp. Nanosci. 11, 714–721 (2016)

    CAS  Article  Google Scholar 

  41. 41.

    Yusuf, M.: Silver Nanoparticles: Synthesis and Applications, Handbook of Ecomaterials, pp. 2343–2356. Springer, Cham (2019)

    Google Scholar 

  42. 42.

    Singh, J., Mehta, A., Rawat, M., Basu, S.: Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-nitrophenol reduction. J. Environ. Chem. Eng. 6, 1468–1474 (2018)

    CAS  Article  Google Scholar 

  43. 43.

    Sathiyavimal, S., Vasantharaj, S., Kaliannan, T., Pugazhendhi, A.: Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Carbohydr. Polym. 241, 116243 (2020)

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Botcha, S., Devi Prattipati, S.: Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells. BioNanoScience 10, 11–22 (2020)

    Article  Google Scholar 

  45. 45.

    Kaur, J., Singh, J., Rawat, M.: An efficient and blistering reduction of 4-nitrophenol by green synthesized silver nanoparticles. SN Appl. Sci. 1, 1060 (2019)

    CAS  Article  Google Scholar 

  46. 46.

    Rani, P., Kumar, V., Singh, P., Singh Matharu, A., Zhang, W., Kim, K., Singh, J., Rawat, M.: Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants. Environ. Int. 143, 105924 (2020)

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Samuel, M., Jose, S., Selvarajan, E., Mathimani, T., Pugazhendhi, A.: Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. J. Photochem. Photobiol. B Biol. 202, 111642 (2020)

    CAS  Article  Google Scholar 

  48. 48.

    Maghimaa, M., Alharbi, S.A.: Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabric for antimicrobial applications and wound healing activity. J. Photochem. Photobiol. B Biol. 204, 111806 (2020)

    CAS  Article  Google Scholar 

  49. 49.

    Hashemi, F., Tasharrofi, N., Mahmoudi Saber, M.: Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J. Mol. Struct. 1208, 127889 (2020)

    CAS  Article  Google Scholar 

  50. 50.

    Jose Varghese, R., Zikalala, N., Mamour Sakho, E.H., Oluwafemi, O.: Green synthesis protocol on metal oxide nanoparticles using plant extracts. In: Colloidal Metal Oxide Nanoparticles. pp. 67–82 (2020)

  51. 51.

    Saha, J., Begum, A., Mukherjee, A., Kumar, S.: A novel green synthesis of silver nanoparticles and their catalytic action in reduction of methylene blue dye. Sustain. Environ. Res. 27, 245–250 (2017)

    CAS  Article  Google Scholar 

  52. 52.

    Saquib Hasnain, M., Javed, N., Alam, S., Rishishwa, P., Rishishwar, S., Ali, S., Nayak, A., Beg, S.: Purple heart plant leaves extract-mediated silver nanoparticle synthesis: optimization by Box–Behnken design. Mater. Sci. Eng. C 99, 1105–1114 (2019)

    Article  CAS  Google Scholar 

  53. 53.

    Selvaraj, V., Sagadevan, S., Muthukrishnan, L., Rafie Johan, M., Podder, J.: Eco-friendly approach in synthesis of silver nanoparticles and evaluation of optical, surface morphological and antimicrobial properties. J. Nanostruct. Chem. 9, 153–162 (2019)

    CAS  Article  Google Scholar 

  54. 54.

    Pirtarighat, S., Ghannadnia, M., Baghshahi, S.: Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem. 9, 1–9 (2019)

    CAS  Article  Google Scholar 

  55. 55.

    Grace Femi-Adepoju, A., Oluwasogo Dada, A., Opeyemi Otun, K., Olufemi Adepoju, A., Paul Fatoba, O.: Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia Pectinata (Willd.) C. Presl.): characterization and antimicrobial studies. Heliyon 5, e01543 (2019)

    Article  Google Scholar 

  56. 56.

    Alkhalaf, M., Hussein, R., Hamza, A.: Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J. Biol. Sci. 27, 2410–2419 (2020)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Paciorek-Sadowska, J., Borowicz, M., Czupryński, B., Tomaszewska, E., Liszkowska, J.: Oenothera biennis seed oil as an alternative raw material for production of bio-polyol for rigid polyurethane-polyisocyanurate foams. Ind. Crops Prod. 126, 208–217 (2018)

    CAS  Article  Google Scholar 

  58. 58.

    Ahmad, A., Kumar Singh, D., Fatima, K., Tandon, S., Luqman, S.: New constituents from the roots of Oenothera biennis and their free radical scavenging and ferric reducing activity. Ind. Crops Prod. 58, 125–132 (2014)

    CAS  Article  Google Scholar 

  59. 59.

    Handa, S.S.: Extraction techniques for medicinal and aromatic plants. In: International Center for Science and High Technology. pp. 42–43 (2008)

  60. 60.

    Azizi, M., Sedaghat, S., Tahvildari, K., Derakhshi, P., Ghaemi, A.: Synthesis of silver nanoparticles using Peganum harmala extract as a green route. Green Chem. Lett. Rev. 10, 420–427 (2017)

    CAS  Article  Google Scholar 

  61. 61.

    Al-Qahtani, Kh.M.: Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract, Egypt. J. Aquat. Res. 43, 269–274 (2017)

    Article  Google Scholar 

  62. 62.

    Dasa, R., Nath, S., Chakdar, D., Gope, G., Bhattacharjee, R.: Synthesis of silver nanoparticles and their optical properties. J. Exp. Nanosci. 5, 357–362 (2010)

    Article  CAS  Google Scholar 

  63. 63.

    Ajitha, B., Ashok Kumar Reddy, Y., Sreedhara Reddy, P.: Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 121, 164–172 (2014)

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Sabouri, M.R., Sohrabi, M.R., Zeraatkar Moghaddam, A.: A novel and efficient dyes degradation using bentonite supported zero-valent iron-based nanocomposites. ChemistrySelect 5, 369–378 (2020)

    CAS  Article  Google Scholar 

  65. 65.

    Singh, H., Du, J., Singh, P., Hoo Yi, T.: Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells 46, 6 (2017)

    Google Scholar 

  66. 66.

    Singh, V., Ali, Z.S., Somashekar, R., Mukherjee, P.S.: Nature of crystallinity in native and acid modified starches. Int. J. Food Prop. 9, 845–854 (2006)

    CAS  Article  Google Scholar 

  67. 67.

    Rajeshkumar, S., Bharath, L.V.: Mechanism of plant-mediated synthesis of silver nanoparticles—a review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact. 273, 219–227 (2017)

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Salmani, M.H., Mirhosseini, M., Moshtagi Laregani, M., Akrami, K.: Survey of silver nanoparticles antibacterial activity against gram-positive and gram-negative bacteria in vitro. J. Tolooebehdasht Sci. 15, 76–84 (2017)

    Google Scholar 

  69. 69.

    Kerkez-Kuyumcu, O., Sena Bayazi, S., Abdel Salam, M.: Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. J. Ind. Eng. Chem. 36, 198–205 (2016)

    CAS  Article  Google Scholar 

  70. 70.

    Anastopoulos, I., Pashalidis, I., Orfanos, A., Manariotis, I., Tatarchuk, T., Sellaoui, L., Bonilla-Petriciolet, A., Mittal, A., Nunez-Delgado, A.: Removal of caffeine, nicotine and amoxicillin from (waste) waters by various adsorbents. A review. J. Environ. Manag. 261, 110236 (2020)

    CAS  Article  Google Scholar 

  71. 71.

    Abdel Aziz, H.M., Saad Farag, R., Abdel-Gawad, S.A.: Carbamazepine removal from aqueous solution by green synthesis zero valent iron/Cu nanoparticles with Ficus Benjamina leaves’ extract. Int. J. Environ. Res. 13, 843–852 (2019)

    CAS  Article  Google Scholar 

  72. 72.

    Oluwafemi, O., Leo Anyik, J., Excellent Zikalala, N., Mamour Sakho, E.: Biosynthesis of silver nanoparticles from water hyacinth plant leaves extract for colourimetric sensing of heavy metals. Nano-Struct. Nano-Objects 20, 100387 (2019)

    CAS  Article  Google Scholar 

  73. 73.

    Naji Seyahmazegi, E., Mohammad-Rezaei, R., Razmi, H.: Multiwall carbon nanotubes decorated on calcined eggshell waste as a novel nano-sorbent: application for anionic dye Congo red removal. Chem. Eng. Res. Des. 109, 824–834 (2016)

    Article  CAS  Google Scholar 

  74. 74.

    Mondal, S., Kumar Majumder, S.: Honeycomb-like porous activated carbon for efficient copper (II) adsorption synthesized from natural source: kinetic study and equilibrium isotherm analysis. J. Environ. Chem. Eng. 7, 103236 (2019)

    CAS  Article  Google Scholar 

  75. 75.

    Amiri, S., Sohrabi, M.S., Motiee, F.: Optimization removal of the ceftriaxone drug from aqueous media with novel zero-valent iron supported on doped strontium hexaferrite nanoparticles by response surface methodology. ChemistrySelect 5, 5831–5840 (2020)

    CAS  Article  Google Scholar 

  76. 76.

    Thanh Tu, N.T., Vinh Thien, T., Dinh Du, P., Thanh Chau, V.T., Xuan Mau, T., Quang Khieu, D.: Adsorptive removal of Congo red from aqueous solution using zeolitic imidazolate framework–67. J. Environ. Chem. Eng. 6, 2269–2280 (2018)

    Article  CAS  Google Scholar 

  77. 77.

    Dongsheng, Zh., Wenqiang, G., Guozhang, C., Shuai, L., Weizhou, J., Youzhi, L.: Removal of heavy metal lead (II) using nanoscale zero-valent iron with different preservation methods. Adv. Powder Technol. 30, 581–589 (2019)

    Article  CAS  Google Scholar 

  78. 78.

    Balarak, D., Mostafapour, F., Bazrafshan, E., Saleh, T.A.: Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes. Water Sci. Technol. 75, 1599–1606 (2017)

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Yang, C., Wang, L., Yu, Y., Wu, P., Wang, F., Liu, S., Luo, X.: Highly efficient removal of amoxicillin from water by Mg–Al layered double hydroxide/cellulose nanocomposite beads synthesized through in-situ coprecipitation method. Int. J. Biol. Macromol. 149, 93–100 (2020)

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Xing Zha, S., Zhou, Y., Jin, X., Chen, Z.: The removal of amoxicillin from wastewater using organobentonite. J. Environ. Manag. 129, 569–576 (2013)

    Article  CAS  Google Scholar 

  81. 81.

    Chauhan, M., Saini, V.K., Suthar, S.: Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium, and paracetamol from water. J. Hazard. Mater. 399, 122832 (2020)

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lotfollahzadeh, R., Yari, M., Sedaghat, S. et al. Biosynthesis and characterization of silver nanoparticles for the removal of amoxicillin from aqueous solutions using Oenothera biennis water extract. J Nanostruct Chem (2021). https://doi.org/10.1007/s40097-021-00393-x

Download citation

Keywords

  • Biosynthesis
  • Oenothera biennis
  • Amoxicillin
  • Silver nanoparticles
  • Antibacterial activity