Mechanical activation of TiO2/Fe2O3 nanocomposite for arsenic adsorption: effect of ball-to-powder ratio and milling time

Abstract

Arsenic contamination and its removal from the ground or natural water become an inevitable research line as it is highly carcinogenic and toxic. In the last few decades, nanotechnology has been achieved to provide accessible clean water for all living organisms. In this work, the various ratios of TiO2/γ-Fe2O3 nanocomposite (T/M NCs) synthesized using the ball-milling route serve as nano-adsorbent for removing arsenic species. This study presents a non-toxic, low-cost, and easily accessible method for synthesizing NCs in large quantities for adsorption, offering promising results for arsenic removal from water. The ball-milling synthesis provides a comparatively, cost-effective strategy and for modulating the properties of nanostructured materials. The milling time and ball-to-powder ratio variations allow modifying the T/M NCs properties during the synthesis. The structural, morphological, and optical characterizations using X-ray diffraction, high-resolution electron microscopy, and UV–Vis analysis showed the formation of predominantly spherical-shaped anatase TiO2 and cubic γ-Fe2O3 with varying bandgap between 2.06 and 2.14 eV, which changes because of the nanomaterial phase transformation during the milling process. Elemental compositional analysis using EDS showed the uniform distribution of Ti and Fe atoms. The vibrational modes observed using Raman spectroscopy confirmed the presence of anatase TiO2 and γ-Fe2O3 within the NCs and showed the associated variations with changes in synthesis parameters. X-ray photoelectron spectroscopy analysis of the synthesized ratios indicated a variation in the binding energy (ΔBE) and the evidence of charge transfer in between TiO2 and γ-Fe2O3 NCs. The adsorption studies using the various T/M NCs ratios show varying performances. The enhanced performances obtained for the NC of anatase TiO2 and γ-Fe2O3 with the most intense phase peak ratio (I(101)/I(311)) of 1.2 and above shows decreased adsorption efficiency with the phase changes into rutile TiO2, hematite, and pseudorutile phases. The elimination of As(III) and As(V) using the synthesized NCs confirms that the ball milling technique can produce nanomaterials with desirable properties for adsorption purposes.

Graphic abstract

The effect of BPR and milling time on TiO2/γ-Fe2O3 nanocomposite (T/M NCs) and its impact on Arsenic adsorption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Shaji, E., Santosh, M., Sarath, K.V., Prakash, P., Deepchand, V., Divya, B.V.: Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geosci. Front. (2020). https://doi.org/10.1016/j.gsf.2020.08.015

    Article  Google Scholar 

  2. 2.

    Gomes, J.A., Rahman, M.S., Das, K., Varma, S., Cocke, D.: A comparative electrochemical study on arsenic removal using iron, aluminum, and copper electrodes. ECS Trans. 25, 59–68 (2019)

    Article  Google Scholar 

  3. 3.

    Saha, R., Dey, N.C., Rahman, M., Bhattacharya, P., Rabbani, G.H.: Geogenic arsenic and microbial contamination in drinking water sources: exposure risks to the coastal population in Bangladesh. Front. Environ. Sci. 7, 57 (2019)

    Article  Google Scholar 

  4. 4.

    Sinha, D., Prasad, P.: Health effects inflicted by chronic low-level arsenic contamination in groundwater: a global public health challenge. J. Appl. Toxicol. 40, 87–131 (2020)

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Qa, M., Ms, K.: Effect on human health due to drinking water contaminated with heavy metals. J. Pollut. Eff. Control 05, 10–11 (2016)

    Google Scholar 

  6. 6.

    Lata, S., Samadder, S.R.: Removal of arsenic from water using nano adsorbents and challenges: a review. J. Environ. Manag. 166, 387–406 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    Kabir, F., Chowdhury, S.: Arsenic removal methods for drinking water in the developing countries: technological developments and research needs. Environ. Sci. Pollut. Res. 24, 24102–24120 (2017)

    CAS  Article  Google Scholar 

  8. 8.

    Çermikli, E., Şen, F., Altıok, E., Wolska, J., Cyganowski, P., Kabay, N., Bryjak, M., Arda, M., Yüksel, M.: Performances of novel chelating ion exchange resins for boron and arsenic removal from saline geothermal water using adsorption-membrane filtration hybrid process. Desalination 491, 114504 (2020)

    Article  CAS  Google Scholar 

  9. 9.

    Pessoa Lopes, M., Galinha, C.F., Crespo, J.G., Velizarov, S.: Optimisation of arsenate removal from water by an integrated ion-exchange membrane process coupled with Fe co-precipitation. Sep. Purif. Technol. 246, 116894 (2020)

    CAS  Article  Google Scholar 

  10. 10.

    Ince, M., Kaplan İnce, O.: An overview of adsorption technique for heavy metal removal from water/wastewater: a critical review. Int. J. Pure Appl. Sci. 3, 10–19 (2017)

    Article  Google Scholar 

  11. 11.

    Siddiqui, S.I., Chaudhry, S.A.: Iron oxide and its modified forms as an adsorbent for arsenic removal: a comprehensive recent advancement. Process Saf. Environ. Prot. 111, 592–626 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    La, D., Nguyen, T., Jones, L., Bhosale, S.: Graphene-supported spinel CuFe2O4 composites: novel adsorbents for arsenic removal in aqueous media. Sensors. 17, 1292–1306 (2017)

    Article  CAS  Google Scholar 

  13. 13.

    La, D.D., Patwari, J.M., Jones, L.A., Antolasic, F., Bhosale, S.V.: Fabrication of a GNP/Fe–Mg binary oxide composite for effective removal of arsenic from aqueous solution. ACS Omega. 2, 218–226 (2017)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Zhou, W., Fu, H., Pan, K., Tian, C., Qu, Y., Lu, P., Sun, C.C.: Mesoporous TiO2/α-Fe2O3: bifunctional composites for effective elimination of arsenite contamination through simultaneous photocatalytic oxidation and adsorption. J. Phys. Chem. C. 112, 19584–19589 (2008)

    CAS  Article  Google Scholar 

  15. 15.

    Ceballos-Chuc, M.C., Ramos-Castillo, C.M., Alvarado-Gil, J.J., Oskam, G., Rodríguez-Gattorno, G.: Influence of brookite impurities on the raman spectrum of TiO2 anatase nanocrystals. J. Phys. Chem. C 122, 19921–19930 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    La, D.D., Thi, H.P.N., Nguyen, T.A., Bhosale, S.V.: Effective removal of Pb(II) using a graphene@ternary oxides composite as an adsorbent in aqueous media. New J. Chem. 41, 14627–14634 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    Ahamed, S., Hussam, A., Munir, A.K.M.: Groundwater arsenic removal technologies based on sorbents. In: Ahuja, S. (ed.) Handbook of Water Purity and Quality, pp. 379–417. Elsevier, USA (2009)

  18. 18.

    Kelly, S.D.: Uranium chemistry in soils and sediments. In: Developments in Soil Science. Elsevier 34, 411–466 (2010). https://doi.org/10.1016/S0166-2481(10)34014-1

    CAS  Article  Google Scholar 

  19. 19.

    Miao, J., Zhang, R., Zhang, L.: Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2. Mater. Res. Bull. 97, 109–114 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    Han, Q., Setchi, R., Evans, S.L.: Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol. 297, 183–192 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    Bui, T.T., Le, X.Q., To, D.P., Nguyen, V.T.: Investigation of typical properties of nanocrystalline iron powders prepared by ball milling techniques. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 045003–045012 (2013)

    Article  CAS  Google Scholar 

  22. 22.

    El-sherif, R.M., Lasheen, T.A., Jebril, E.A.: Fabrication and characterization of CeO2–TiO2–Fe2O3 magnetic nanoparticles for rapid removal of uranium ions from industrial waste solutions. J. Mol. Liq. 241, 260–269 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    Jamkhande, P.G., Ghule, N.W., Bamer, A.H., Kalaskar, M.G.: Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53, 101174 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    Castrillón Arango, J.A., Cristóbal, A.A., Ramos, C.P., Bercoff, P.G., Botta, P.M.: Mechanochemical synthesis and characterization of nanocrystalline Ni1xCoxFe2O4 (0 ≤ x ≤ 1) ferrites. J. Alloys Compd. 811, 152044 (2019)

    Article  CAS  Google Scholar 

  25. 25.

    Hu, J., Geng, X., Duan, Y., Zhao, W., Zhu, M., Ren, S.: Effect of mechanical–chemical modification process on mercury removal of bromine modified fly ash. Energy Fuels 34, 9829–9839 (2020)

    CAS  Article  Google Scholar 

  26. 26.

    Jiang, J., Li, J.: Mechanically induced N-arylation of amines with diaryliodonium salts. ChemistrySelect. 5, 542–548 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    Do, J.L., Friščić, T.: Mechanochemistry: a force of synthesis. ACS Cent. Sci. 3, 13–19 (2017)

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Zhu, Y., Zhang, L.I., Gao, C., Cao, L.: The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor. J. Mater. Sci. 35, 4049–4054 (2000)

    CAS  Article  Google Scholar 

  29. 29.

    Mercyrani, B., Hernandez-Maya, R., Solís-López, M., Th-Th, C., Velumani, S.: Photocatalytic degradation of Orange G using TiO2/Fe3O4 nanocomposites. J. Mater. Sci. Mater. Electron. 29, 15436–15444 (2018)

    CAS  Article  Google Scholar 

  30. 30.

    Deepa, K., Himagirish Kumar, S., Paul Raj, Y., Jyothi, N.V.V., Lingappa, Y.: A simple spectrophotometric method for the determination of arsenic in industrial and environmental samples using vanillin-2-amino nicotinic acid (VANA). Der. Pharm. Lett. 7, 345–352 (2015)

    Google Scholar 

  31. 31.

    Naguib, I.A., Abdelaleem, E.A., Hassan, E.S., Emam, A.A.: Comparative study of eco-friendly spectrophotometric methods for accurate quantification of mebendazole and quinfamide combination; content uniformity evaluation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 235, 118271 (2020)

    CAS  Article  Google Scholar 

  32. 32.

    Shahat, A., Hassan, H.M.A., Azzazy, H.M.E., Hosni, M., Awual, M.R.: Novel nano-conjugate materials for effective arsenic(V) and phosphate capturing in aqueous media. Chem. Eng. J. 331, 54–63 (2018)

    CAS  Article  Google Scholar 

  33. 33.

    Morán, A., Nwakanma, O., Velumani, S., Castaneda, H.: Comparative study of optimised molybdenum back-contact deposition with different barriers (Ti, ZnO) on stainless steel substrate for flexible solar cell application. J. Mater. Sci. Mater. Electron. 31, 7524–7538 (2020)

    Article  CAS  Google Scholar 

  34. 34.

    Makuła, P., Pacia, M., Macyk, W.: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018)

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Khot, A.C., Desai, N.D., Khot, K.V., Salunkhe, M.M., Chougule, M.A., Bhave, T.M., Kamat, R.K., Musselman, K.P., Dongale, T.D.: Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: effect of growth temperature. Mater. Des. 151, 37–47 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    Mariño-Salguero, J., Jorge, J., Menéndez-Aguado, J.M., Álvarez-Rodriguez, B., De Felipe, J.J.: Heat generation model in the ball-milling process of a tantalum ore. Miner. Metall. Process. 34, 10–19 (2017)

    Google Scholar 

  37. 37.

    Suryanarayana, C., Ivanov, E., Noufi, R., Contreras, M.A., Moore, J.J.: Phase selection in a mechanically alloyed Cu-In-Ga-Se powder mixture. J. Mater. Res. 14, 377–383 (1999)

    CAS  Article  Google Scholar 

  38. 38.

    Oscarson, D.W., Huang, P.M., Hammer, U.T., Liaw, W.K.: Oxidation and sorption of arsenite by manganese dioxide as influenced by surface coatings of iron and aluminum oxides and calcium carbonate. Water. Air. Soil Pollut. 20, 233–244 (1983)

    CAS  Article  Google Scholar 

  39. 39.

    Danish, M.I., Qazi, I.A., Zeb, A., Habib, A., Awan, M.A., Khan, Z.: Arsenic removal from aqueous solution using pure and metal-doped Titania nanoparticles coated on glass beads: adsorption and column studies. J. Nanomater. 2013, 1–17 (2013)

    Article  CAS  Google Scholar 

  40. 40.

    Mohan, D., Pittman, C.U.: Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. 142, 1–53 (2007)

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Awual, M.R., Shenashen, M.A., Yaita, T., Shiwaku, H., Jyo, A.: Efficient arsenic(V) removal from water by ligand exchange fibrous adsorbent. Water Res. 46, 5541–5550 (2012)

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Xia, C., Jia, Y., Tao, M., Zhang, Q.: Tuning the band gap of hematite α-Fe2O3 by sulfur doping. Phys. Lett. Sect. A Gen. At. Solid State Phys. 377, 1943–1947 (2013)

    CAS  Google Scholar 

  43. 43.

    Niewiadomski, A., Kania, A., Kugel, G.E., Hafid, M., Sitko, D.: Raman spectroscopy, dielectric properties and phase transitions of Ag0.96Li0.04NbO3 ceramics. Mater. Res. Bull. 65, 123–131 (2015)

    CAS  Article  Google Scholar 

  44. 44.

    Stagi, L., Carbonaro, C.M., Corpino, R., Chiriu, D., Ricci, P.C.: Light induced TiO2 phase transformation: correlation with luminescent surface defects. Phys. Status Solidi Basic Res. 252, 124–129 (2015)

    CAS  Article  Google Scholar 

  45. 45.

    Skvortsova, V.L., Samoylovich, M.I., Belyanin, A.F.: Studies of phase composition of contact sites of diamond crystals and the surrounding rocks. Dokl. Earth Sci. 465, 1187–1190 (2015)

    CAS  Article  Google Scholar 

  46. 46.

    Rezaee, M., Mousavi Khoie, S.M., Liu, K.H.: The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: an XRD and Raman spectroscopy investigation. CrystEngComm 13, 5055–5061 (2011)

    CAS  Article  Google Scholar 

  47. 47.

    Challagulla, S., Tarafder, K., Ganesan, R., Roy, S.: Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep. 7, 1–11 (2017)

    CAS  Article  Google Scholar 

  48. 48.

    Deng, X., Huang, Z., Wang, W., Davé, R.N.: Investigation of nanoparticle agglomerates properties using Monte Carlo simulations. Adv. Powder Technol. 27, 1971–1979 (2016)

    CAS  Article  Google Scholar 

  49. 49.

    Rahman, M.T., Asadul Hoque, M., Rahman, G.T., Gafur, M.A., Khan, R.A., Hossain, M.K.: Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results Phys. 13, 102264 (2019)

    Article  Google Scholar 

  50. 50.

    Li, C.Y., Wang, J.B., Wang, Y.Q.: Microstructure and photocatalytic activity of titanium dioxide nanoparticles. Chin. Phys. B 21, 1–5 (2012)

    Google Scholar 

  51. 51.

    Liu, J., Meeprasert, J., Namuangruk, S., Zha, K., Li, H., Huang, L., Maitarad, P., Shi, L., Zhang, D.: Facet-activity relationship of TiO2 in Fe2O3/TiO2 nanocatalysts for selective catalytic reduction of NO with NH3. In situ DRIFTs and DFT studies. J. Phys. Chem. C 121, 4970–4979 (2017)

    CAS  Article  Google Scholar 

  52. 52.

    Zhang, X., Zhou, J., Gu, Y., Fan, D.: Visible-light photocatalytic activity of N-doped TiO2 nanotube arrays on acephate degradation. J. Nanomater. 2015, 1–6 (2015)

    Google Scholar 

  53. 53.

    Radu, T., Iacovita, C., Benea, D., Turcu, R.: X-ray photoelectron spectroscopic characterization of iron oxide nanoparticles. Appl. Surf. Sci. 405, 337–343 (2017)

    CAS  Article  Google Scholar 

  54. 54.

    Briggs, D.: X. In: Packham, D. E. (ed.) Handbook of Adhesion, pp. 621–622. John Wiley & Sons, Ltd, Chichester, UK (2005)

  55. 55.

    Yan, J., Zhang, Y., Liu, S., Wu, G., Li, L., Guan, N.: Facile synthesis of an iron doped rutile TiO2 photocatalyst for enhanced visible-light-driven water oxidation. J. Mater. Chem. A. 3, 21434–21438 (2015)

    CAS  Article  Google Scholar 

  56. 56.

    Akhavan, O.: Thickness dependent activity of nanostructured TiO2/α-Fe2O3 photocatalyst thin films. Appl. Surf. Sci. 257, 1724–1728 (2010)

    CAS  Article  Google Scholar 

  57. 57.

    Nayak, M.K., Singh, J., Singh, B., Soni, S., Pandey, V.S., Tyagi, S.: Introduction to semiconductor nanomaterial and its optical and electronics properties. In: Gupta, R.K., Misra, M. (eds.) Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications, pp. 1–33. Elsevier (2017)

  58. 58.

    Bueno-Ferrer, C., Parres-Esclapez, S., Lozano-Castelló, D., Bueno-López, A.: Relationship between surface area and crystal size of pure and doped cerium oxides. J. Rare Earths. 28, 647–653 (2010)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Consejo Nacional de Ciencia y Tecnología (National Council of Science and Technology, CONACyT-Mexico) for providing the financial support from the project CONACYT-SENER 263043.

Author information

Affiliations

Authors

Contributions

Mercyrani Babudurai: Carried out experiments, Methodology, conceptualization, writing – original draft, consolidating results. Onyekachi Nwakanma: Formal analysis and writing – contributing to original draft. Araceli Romero-Nuñez: interpretations, data preparation, review. Ravichandran Manisekaran: Writing, review and editing, data curation. Homero Castaneda: Guidance, Revision, Validation, draft formatting. Anish Jantrania: Help in experimental results interpretations, advice to improve draft, format corrections. Velumani Subramaniam: Supervision, resource, project administration.

Corresponding author

Correspondence to Velumani Subramaniam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babudurai, M., Nwakanma, O., Romero-Nuñez, A. et al. Mechanical activation of TiO2/Fe2O3 nanocomposite for arsenic adsorption: effect of ball-to-powder ratio and milling time. J Nanostruct Chem (2021). https://doi.org/10.1007/s40097-021-00388-8

Download citation

Keywords

  • Ball milling
  • Arsenic
  • Nano-adsorbent
  • TiO2/γ-Fe2O3 nanocomposite