Synthesis and characterization of Au and Bi2O3 decorated Fe3O4@PAMAM dendrimer nanocomposites for medical applications

Abstract

Fe3O4 magnetic nanoparticles were produced and covered with TEOS and APTES which were known to reduce the toxic properties of nanoparticles. Nanoparticles were functionalized second-generation PAMAM dendrimers and doped with Au and Bi2O3 nanoparticles where Fe3O4@G2/Au/Bi2O3 nanocomposites were obtained for potential multimodal imaging applications. Physicals structures of the nanocomposites were characterized using SEM and TEM which illustrate that nanoparticles were in composite form. Chemical composition of nanostructures was confirmed using EDX and FTIR. Magnetic characteristics were checked using VSM. It was seen that nanoparticles have superparamagnetic properties which indicate that nanocomposites have potential to be used in MRI and magnetic hyperthermia applications. X-ray imaging properties were confirmed using X-ray imaging and CT imaging. It was confirmed that doping nanoparticles with Au and Bi2O3 nanoparticles significantly enhanced the X-ray tomography contrast enhancement properties which illustrate the theranostic properties of the nanocomposites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Ge, M.Y., Han, L.Y., Wiedwald, U., Xu, X.B., Wang, C., Kuepper, K., Ziemann, P., Jiang, J.Z.: Monodispersed NiO nanoflowers with anomalous magnetic behavior related content monodispersed NiO nanoflowers with anomalous magnetic behavior. Nanotechnology. 21(42), 1–5 (2010)

    Article  CAS  Google Scholar 

  2. 2.

    Roduner, E.: Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Aslan, N., Ceylan, B., Koç, M.M., Findik, F.: Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: a review. J. Mol. Struct. 1219, 128599 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    Aktas, S., Thornton, S.C., Binns, C., Denby, P.: Gas phase synthesis of core-shell Fe@FeOx magnetic nanoparticles into fluids. J. Nanoparticle Res. 18(365), 1–7 (2016)

    CAS  Google Scholar 

  5. 5.

    Kurnaz Yetim, N., Aslan, N., Koç, M.M.: Structural and catalytic properties of Fe3O4 doped Bi2S3 novel magnetic nanocomposites: p-Nitrophenol case. J. Environ. Chem. Eng. 8, 104258 (2020)

    CAS  Article  Google Scholar 

  6. 6.

    Aktas, S., Thornton, S.C., Binns, C., Lari, L., Pratt, A., Kröger, R., Horsfield, M.A.: Control of gas phase nanoparticle shape and its effect on MRI relaxivity. Mater. Res. Express. 2, 105356 (2015)

    Article  CAS  Google Scholar 

  7. 7.

    Binns, C., Prieto, P., Baker, S., Howes, P., Dondi, R., Burley, G., Lari, L., Kröger, R., Pratt, A., Aktas, S., Mellon, J.K.: Preparation of hydrosol suspensions of elemental and core-shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions. J. Nanoparticle Res. 14(1136), 1–16 (2012)

    Google Scholar 

  8. 8.

    Luan, L., Tang, B., Liu, Y., Wang, A., Zhang, B., Xu, W., Niu, Y.: Selective capture of Hg(II) and Ag(I) from water by sulfur-functionalized polyamidoamine dendrimer/magnetic Fe3O4 hybrid materials. Sep. Purif. Technol. 257, 117902 (2021)

    CAS  Article  Google Scholar 

  9. 9.

    Zhang, Z., Niu, Y., Chen, H., Yang, Z., Bai, L., Xue, Z., Yang, H.: Feasible one-pot sequential synthesis of Aminopyridine functionalized magnetic Fe3O4 hybrids for robust capture of aqueous Hg(II) and Ag(I). ACS Sustain. Chem. Eng. 7, 7324–7337 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    Zhou, Y., Luan, L., Tang, B., Niu, Y., Qu, R., Liu, Y., Xu, W.: Fabrication of Schiff base decorated PAMAM dendrimer/magnetic Fe3O4 for selective removal of aqueous Hg(II). Chem. Eng. J. 398, 125651 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    Turan, E.: His-Tag-epitope imprinted thermoresponsive magnetic nanoparticles for recognition and separation thyroid peroxidase antigens from whole blood samples. ChemistrySelect. 3, 11963–12011 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    Tran, L.D., Hoang, N.M.T., Mai, T.T., Tran, H.V., Nguyen, N.T., Tran, T.D., Do, M.H., Nguyen, Q.T., Pham, D.G., Ha, T.P., Le, H.V., Nguyen, P.X.: Nanosized magnetofluorescent Fe3O4-curcumin conjugate for multimodal monitoring and drug targeting. Colloids Surfaces A Physicochem. Eng. Asp. 371, 104–112 (2010)

    CAS  Article  Google Scholar 

  13. 13.

    Koç, M.M., Aslan, N., Kao, A.P., Barber, A.H.: Evaluation of X-ray tomography contrast agents: a review of production, protocols, and biological applications. Microsc. Res. Tech. 82, 812–848 (2019)

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Babes, L., Denizot, B., Tanguy, G., Le Jeune, J.J., Jallet, P.: Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interface Sci. 212, 474–482 (1999)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Jeng, H.A., Swanson, J.: Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 41, 2699–2711 (2006)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Xue, S., Wang, Y., Wang, M., Zhang, L., Du, X.: Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence. Int. J. Nanomedicine. 9, 2527–2538 (2014)

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tumturk, H., Sahin, F., Turan, E.: Magnetic nanoparticles coated with different shells for biorecognition: high specific binding capacity. Analyst. 139, 1093–1100 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Kwon, S.-P., Jeon, S., Lee, S.-H., Yoon, H.Y., Ryu, J.H., Choi, D., Kim, J.-Y., Kim, J., Park, J.H., Kim, D.-E., Kwon, I.C., Kim, K., Ahn, C.-H.: Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging. Biomaterials 150, 125–136 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Kurnaz Yetim, N., Kurşun Baysak, F., Koç, M.M., Nartop, D.: Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications. J. Mater. Sci. Mater. Electron. 31, 18278–18288 (2020)

    Article  CAS  Google Scholar 

  20. 20.

    Yu, N., Wang, Z., Zhang, J., Liu, Z., Zhu, B., Yu, J., Zhu, M., Peng, C., Chen, Z.: Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy. Biomaterials 161, 279–291 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Cai, J., Miao, Y., Li, L., Fan, H., Cai, J., Miao, Y.Q., Li, L., Fan, H.M.: Facile preparation of gold-decorated Fe3O4 nanoparticles for CT and MR dual-modal imaging. Int. J. Mol. Sci. 19, 4049 (2018)

    PubMed Central  Article  Google Scholar 

  22. 22.

    Mirzabe, G.H., Keshtkar, A.R.: Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent. J. Ind. Eng. Chem. 26, 277–285 (2015)

    CAS  Article  Google Scholar 

  23. 23.

    Saedi, S., Rhim, J.W.: Synthesis of Fe3O4@SiO2@PAMAM dendrimer@AgNP hybrid nanoparticles for the preparation of carrageenan-based functional nanocomposite film. Food Packag. Shelf Life. 24, 100473 (2020)

    Article  Google Scholar 

  24. 24.

    Abu-Reziq, R., Alper, H., Wang, D., Post, M.L.: Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. J. Am. Chem. Soc. 128, 5279–5282 (2006)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Huang, J., Shu, Q., Wang, L., Wu, H., Wang, A.Y., Mao, H.: Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 39, 105–113 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Che Rose, L., Bear, J.C., McNaughter, P.D., Southern, P., Piggott, R.B., Parkin, I.P., Qi, S., Mayes, A.G.: A SPION-eicosane protective coating for water soluble capsules: evidence for on-demand drug release triggered by magnetic hyperthermia. Sci. Rep. 6, 1–5 (2016)

    Article  CAS  Google Scholar 

  27. 27.

    Wei, B., Zhang, X., Zhang, C., Jiang, Y., Fu, Y.Y., Yu, C., Sun, S.K., Yan, X.P.: Facile synthesis of uniform-sized Bismuth nanoparticles for CT visualization of gastrointestinal tract in vivo. Acs Appl. Mater. Interfaces. 8, 12720–12726 (2016)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Kong, W., Lee, W., Cui, Z., Bae, K., Park, T., Kim, J., Ho Kong, W., Jae Lee, W., Yun Cui, Z., Hyun Bae, K., Gwan Park, T., Hoon Kim, J., Park, K., Won Seo, S.: Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials 28, 5555–5561 (2007)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Yallapu, M.M., Foy, S.P., Jain, T.K., Labhasetwar, V.: PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm. Res. 27, 2283–2295 (2010)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Chang, Y., Meng, X., Zhao, Y., Li, K., Zhao, B., Zhu, M., Li, Y., Chen, X., Wang, J.: Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J. Colloid Interface Sci. 363, 403–409 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Kalsch, W.: Biodegradation of the iodinated X-ray contrast media diatrizoate and iopromide. Sci. Total Environ. 1, 143–145 (1999)

    Article  Google Scholar 

  32. 32.

    Karaçam, R., Yetim, N.K., Koç, M.M.: Structural and magnetic investigation of Bi2S3@Fe3O4 nanocomposites for medical applications. J. Supercond. Nov. Magn. 33, 2715–2725 (2020)

    Article  CAS  Google Scholar 

  33. 33.

    Cole, L.E., McGinnity, T.L., Irimata, L.E., Vargo-Gogola, T., Roeder, R.K.: Effects of bisphosphonate ligands and PEGylation on targeted delivery of gold nanoparticles for contrast-enhanced radiographic detection of breast microcalcifications. Acta Biomater. 82, 122–132 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Cai, Q., Kim, S., Choi, K., Kim, S., Byun, S.: Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest. Radiol. 12, 797–806 (2007)

    Article  CAS  Google Scholar 

  35. 35.

    Kulkarni, S., Sawadh, P., Palei, P.: Synthesis and characterization of superparamagnetic Fe3O4@ SiO2 nanoparticles. J. Korean Chem. 58, 100–103 (2014)

    CAS  Article  Google Scholar 

  36. 36.

    Sahin, F., Turan, E., Tumturk, H., Demirel, G.: Core-shell magnetic nanoparticles: a comparative study based on silica and polydopamine coating for magnetic bio-separation platforms. Analyst. 137, 5654–5658 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Hong, R.Y., Zhang, S.Z., Di, G.Q., Li, H.Z., Zheng, Y., Ding, J., Wei, D.G.: Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater. Res. Bull. 43, 2457–2468 (2008)

    CAS  Article  Google Scholar 

  38. 38.

    Zarei, A., Saedi, S., Seidi, F.: Synthesis and application of Fe3O4@SiO2@Carboxyl-terminated PAMAM dendrimer nanocomposite for heavy metal removal. J. Inorg. Organomet. Polym. Mater. 28, 2835–2843 (2018)

    CAS  Article  Google Scholar 

  39. 39.

    Lei, W., Liu, Y., Si, X., Xu, J., Du, W., Yang, J., Zhou, T., Lin, J.: Synthesis and magnetic properties of octahedral Fe3O4 via a one-pot hydrothermal route. Phys. Lett. A 381, 314–318 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    Qu, F., Wang, Y., Liu, J., Wen, S., Chen, Y., Ruan, S.: Fe3O4-NiO core-shell composites: hydrothermal synthesis and toluene sensing properties. Mater. Lett. 132, 167–170 (2014)

    CAS  Article  Google Scholar 

  41. 41.

    Aliannejadi, S., Hassani, A.H., Panahi, H.A., Borghei, S.M.: Fabrication and characterization of high-branched recyclable PAMAM dendrimer polymers on the modified magnetic nanoparticles for removing naphthalene from aqueous solutions. Microchem. J. 145, 767–777 (2019)

    CAS  Article  Google Scholar 

  42. 42.

    Hedayati, K., Goodarzi, M., Kord, M.: Green and facile synthesis of Fe3O4-PbS magnetic nanocomposites applicable for the degradation of toxic organic dyes. Main Gr. Met. Chem. 39, 183–194 (2016)

    CAS  Google Scholar 

  43. 43.

    Kavousi, F., Goodarzi, M., Ghanbari, D., Hedayati, K.: Synthesis and characterization of a magnetic polymer nanocomposite for the release of metoprolol and aspirin. J. Mol. Struct. 1183, 324–330 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Duzce University Scientific Research Project Commission with project number 2019.07.06.981. We also would like to thank Mr. Gökhan AYDEĞER for his valuable contributions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nurdan Kurnaz Yetim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurnaz Yetim, N., Kurşun Baysak, F., Koç, M.M. et al. Synthesis and characterization of Au and Bi2O3 decorated Fe3O4@PAMAM dendrimer nanocomposites for medical applications. J Nanostruct Chem (2021). https://doi.org/10.1007/s40097-021-00386-w

Download citation

Keywords

  • Fe3O4
  • Magnetic nanoparticles
  • PAMAM dendrimers
  • TEOS
  • Au
  • Bi2O3
  • Medical applications
  • X-ray tomography