Antibacterial and photocatalytic aspects of zinc oxide nanorods synthesized using Piper nigrum seed extract

Abstract

Develop a facile green route to synthesize various metal oxide nanoparticles is a critical task in green nanotechnology. The present work documented the utilization of Piper nigrum seed extract to synthesis zinc oxide nanorods (ZnO NRs). The X-ray diffraction (XRD) analysis was used to identify the crystalline formation of ZnO NRs. The X-ray photon spectroscopy (XPS) determined the atomic concentration of ZnO NRs. The arisen of a peak at 380 nm in the UV–vis DRS spectroscopy also affirmed the production of ZnO NRs. The transmission electron microscopic (TEM) analysis revealed the length of 415 nm and width 30.6 nm of the ZnO NRs. The synthesized ZnO NRs forcefully impeded the Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) growth by concentration-dependent manner. Further, the scanning electron microscopic (SEM) analysis confirms the morphological changes and membrane damage in ZnO NRs treated S. aureus and E. coli bacterial cultures. The degradation efficacy of ZnO NRs against methylene blue was achieved by 97.32% within 150 min in sunlight exposure, and the pseudo-first-order rate of constant was determined of about 0.0194 min−1. The present report reveals the better usage of ZnO-based nanomaterials for medical and environmental dye degradation applications.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Rai, P., Yu, Y.T.: Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sens. Actuators B Chem. 173, 58–65 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    Fouda, A., Saad, E.L., Salem, S.S., Shaheen, T.I.: In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microb. Pathog. 125, 252–261 (2018)

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Jeyabharathi, S., Kalishwaralal, K., Sundar, K., Muthukumaran, A.: Synthesis of zinc oxide nanoparticles (ZnONPs) by aqueous extract of Amaranthus caudatus and evaluation of their toxicity and antimicrobial activity. Mater. Lett. 209, 295–298 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    Ishwarya, R., Vaseeharan, B., Kalyani, S., Banumathi, B., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Al-Anbr, M.N., Khaled, J.M., Benelli, G.: Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J. Photochem. Photobiol. B Biol. 178, 249–258 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    Nagajyothi, P.C., An, T.M., Sreekanth, T.V.M., Lee, J.I., Lee, D.J., Lee, K.D.: Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. Mater. Lett. 108, 160–163 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    Maruthupandy, M., Zuo, Y., Chen, J.S., Song, J.M., Niu, H.L., Mao, C.J., Zhang, S.Y., Shen, Y.H.: Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications. Appl. Surf. Sci. 397, 167–174 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    Mclaren, A., Valdes-Solis, T., Li, G., Tsang, S.C.: Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131, 12540–12541 (2009)

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Ayangbenro, A.S., Babalola, O.O.: A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Environ. Res. Public Health 14, 94 (2017)

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  9. 9.

    Liu, L., Bilal, M., Duan, X., Iqbal, H.M.: Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Sci. Total Environ. 667, 444–454 (2019)

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Muhd Julkapli, N., Bagheri, S., Bee Abd Hamid, S.: Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. (2014). https://doi.org/10.1155/2014/692307

    Article  Google Scholar 

  11. 11.

    Alharbi, N.S., Hu, B., Hayat, T., Rabah, S.O., Alsaedi, A., Zhuang, L., Wang, X.: Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front. Chem. Sci. Eng. 14, 1124–1135 (2020)

    CAS  Article  Google Scholar 

  12. 12.

    Yao, L., Yang, H., Chen, Z., Qiu, M., Hu, B., Wang, X.: Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere (2020). https://doi.org/10.1016/j.chemosphere.2020.128576

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Eskizeybek, V., Sarı, F., Gulce, H., Gulce, A., Avcı, A.: Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B. 119, 197–206 (2012)

    Article  CAS  Google Scholar 

  14. 14.

    Hameed, B.H., Ahmad, A.L., Latiff, K.N.A.: Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigm. 75, 143–149 (2007)

    CAS  Article  Google Scholar 

  15. 15.

    Yu, X.Z., Feng, Y.X., Yue, D.M.: Phytotoxicity of methylene blue to rice seedlings. Glob. J. Environ. Sci. Manage. 1, 199–204 (2015)

    CAS  Google Scholar 

  16. 16.

    Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S., Praseetha, P.K.: Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Mater. Sci. Semicond. Process. 82, 39–45 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    Mostafa, A.A., Al-Askar, A.A., Almaary, K.S., Dawoud, T.M., Sholkamy, E.N., Bakri, M.M.: Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 25(2), 361–366 (2018)

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L., Fowler, V.G.: Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28(3), 603–661 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Russo, T.A., Johnson, J.R.: Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microb. Infect. 5(5), 449–456 (2003)

    Article  Google Scholar 

  20. 20.

    Schlecht, L.M., Peters, B.M., Krom, B.P., Freiberg, J.A., Hänsch, G.M., Filler, S.G., Jabra-Rizk, M.A., Shirtliff, M.E.: Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 161, 168–181 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Hu, B., Ai, Y., Jin, J., Hayat, T., Alsaedi, A., Zhuang, L., Wang, X.: Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2, 47–64 (2020)

    Article  Google Scholar 

  22. 22.

    Hao, M., Qiu, M., Yang, H., Hu, B., Wang, X.: Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci Total Environ (2020). https://doi.org/10.1016/j.scitotenv.2020.143333

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Chiu, W.S., Khiew, P.S., Cloke, M., Isa, D., Tan, T.K., Radiman, S., Abd-Shukor, R., Abd. Hamid, M.A., Huang, N.M., Lim, H.N., Chia, C.H.: Photocatalytic study of two-dimensional ZnO nanopellets in the decomposition of methylene blue. Chem. Eng. J. 158, 345–352 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    Maruthupandy, M., Rajivgandhi, G., Muneeswaran, T., Song, J.M., Manoharan, N.: Biologically synthesized zinc oxide nanoparticles as nanoantibiotics against ESBLs producing gram negative bacteria. Microb. Pathog. 121, 224–231 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Chu, D., Masuda, Y., Ohji, T., Kato, K.: Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir 26, 2811–2815 (2010)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Ramesh, M., Anbuvannan, M., Viruthagiri, G.J.S.A.P.A.M.: Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 864–870 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Varadavenkatesan, T., Vinayagam, R., Selvaraj, R.: Green synthesis and structural characterization of silver nanoparticles synthesized using the pod extract of Clitoria ternatea and its application towards dye degradation. Mater. Today Proc. 23, 27–29 (2020)

    CAS  Article  Google Scholar 

  28. 28.

    Varadavenkatesan, T., Selvaraj, R., Vinayagam, R.: Green synthesis of silver nanoparticles using Thunbergia grandiflora flower extract and its catalytic action in reduction of Congo red dye. Mater. Today Proc. 23, 39–42 (2020)

    CAS  Article  Google Scholar 

  29. 29.

    Anchan, S., Pai, S., Sridevi, H., Varadavenkatesan, T., Vinayagam, R., Selvaraj, R.: Biogenic synthesis of ferric oxide nanoparticles using the leaf extract of Peltophorum pterocarpum and their catalytic dye degradation potential. Biocatal. Agric. Biotechnol. 20, 101251 (2019)

    Article  Google Scholar 

  30. 30.

    Jamdagni, P., Khatri, P., Rana, J.S.: Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud. Univ. Sci. 30, 168–175 (2018)

    Article  Google Scholar 

  31. 31.

    Jafarirad, S., Mehrabi, M., Divband, B., Kosari-Nasab, M.: Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater. Sci. Eng. C. 59, 296–302 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    Sangeetha, G., Rajeshwari, S., Venckatesh, R.: Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull. 46, 2560–2566 (2011)

    CAS  Article  Google Scholar 

  33. 33.

    Supraja, N., Prasad, T.N.V.K.V., Krishna, T.G., David, E.: Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles. Appl Nanosci 6, 581–590 (2016)

    CAS  Article  Google Scholar 

  34. 34.

    Chen, L., Batjikh, I., Hurh, J., Han, Y., Huo, Y., Ali, H., Li, J.F., Rupa, E.J., Ahn, J.C., Mathiyalagan, R., Yang, D.C.: Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue. Optik 184, 324–329 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    Fazlzadeh, M., Khosravi, R., Zarei, A.: Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr (VI) from aqueous solution. Ecol. Eng. 103, 180–190 (2017)

    Article  Google Scholar 

  36. 36.

    Akthar, M.S., Birhanu, G., Demisse, S.: Antimicrobial activity of Piper nigrum L. and Cassia didymobotyra L. leaf extract on selected food borne pathogens. Asian Pacific J. Trop. Dis. 4, S911–S919 (2014)

    Article  Google Scholar 

  37. 37.

    Deng, Y., Sriwiriyajan, S., Tedasen, A., Hiransai, P., Graidist, P.: Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. J. Ethnopharmacol. 188, 87–95 (2016)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Liu, Y., Yadev, V.R., Aggarwal, B.B., Nair, M.G.: Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B. Nat. Prod. Commun. 5, 1253–1257 (2010)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  39. 39.

    Tasleem, F., Azhar, I., Ali, S.N., Perveen, S., Mahmood, Z.A.: Analgesic and anti-inflammatory activities of Piper nigrum L. Asian Pacific J. Trop. Med. 7, S461–S468 (2014)

    Article  Google Scholar 

  40. 40.

    Meghwal, M., Goswami, T.K.: Piper nigrum and piperine: an update. Phytother. Res. 27, 1121–1130 (2013)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Varadavenkatesan, T., Lyubchik, E., Pai, S., Pugazhendhi, A., Vinayagam, R., Selvaraj, R.: Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. J. Photochem. Photobiol. B Biol. 199, 111621 (2019)

    CAS  Article  Google Scholar 

  42. 42.

    Pai, S., Sridevi, H., Varadavenkatesan, T., Vinayagam, R., Selvaraj, R.: Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization. Optik 185, 248–255 (2019)

    CAS  Article  Google Scholar 

  43. 43.

    Vinayagam, R., Selvaraj, R., Arivalagan, P., Varadavenkatesan, T.: Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. J. Photochem. Photobiol. B Biol. 203, 111760 (2020)

    CAS  Article  Google Scholar 

  44. 44.

    Thein, M.T., Pung, S.Y., Aziz, A., Itoh, M.: Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study. J. Sol-Gel Sci. Technol. 74, 260–271 (2015)

    CAS  Article  Google Scholar 

  45. 45.

    Ahmad, N., Fazal, H., Abbasi, B.H., Farooq, S., Ali, M., Khan, M.A.: Biological role of Piper nigrum L. (Black pepper): a review. Asian Pacific J. Trop. Biomed. 2, S1945–S1953 (2012)

    Article  Google Scholar 

  46. 46.

    Babu, K.N., Hemalatha, R., Satyanarayana, U., Shujauddin, M., Himaja, N., Bhaskarachary, K., Kumar, B.D.: Phytochemicals, polyphenols, prebiotic effect of Ocimum sanctum, Zingiber officinale Piper nigrum extracts. J. Herb. Med. 13, 42–51 (2018)

    Article  Google Scholar 

  47. 47.

    Ha, T.T., Canh, T.D., Tuyen, N.V.: A quick process for synthesis of ZnO nanoparticles with the aid of microwave irradiation. ISRN Nanotechnol. (2013). https://doi.org/10.1155/2013/497873

    Article  Google Scholar 

  48. 48.

    Sudha, K.G., Ali, S., Karunakaran, G., Kowsalya, M., Kolesnikov, E., Rajeshkumar, M.P.: Eco-friendly synthesis of ZnO nanorods using Cycas pschannae plant extract with excellent photocatalytic, antioxidant, and anticancer nanomedicine for lung cancer treatment. Appl. Organomet. Chem. 34, e5511 (2020)

    CAS  Article  Google Scholar 

  49. 49.

    Dhavan, P.P., Jadhav, B.L.: Eco-friendly approach to control dengue vector Aedes aegypti larvae with their enzyme modulation by Lumnitzera racemosa fabricated zinc oxide nanorods. SN Appl. Sci. 2, 1–15 (2020)

    Article  CAS  Google Scholar 

  50. 50.

    Varadavenkatesan, T., Selvaraj, R., Vinayagam, R.: Dye degradation and antibacterial activity of green synthesized silver nanoparticles using Ipomoea digitata Linn. flower extract. Int. J. Environ. Sci. Technol. 16(5), 2395–2404 (2019)

    CAS  Article  Google Scholar 

  51. 51.

    Dash, A., Ahmed, M.T., Selvaraj, R.: Mesoporous magnetite nanoparticles synthesis using the Peltophorum pterocarpum pod extract, their antibacterial efficacy against pathogens and ability to remove a pollutant dye. J. Mol. Struct. 1178, 268–273 (2019)

    CAS  Article  Google Scholar 

  52. 52.

    Raja, S., Ramesh, V., Thivaharan, V.: Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab. J. Chem. 10(2), 253–261 (2017)

    CAS  Article  Google Scholar 

  53. 53.

    Yadav, P., Manjunath, H., Selvaraj, R.: Antibacterial and dye degradation potential of zero-valent silver nanoparticles synthesised using the leaf extract of Spondias dulcis. IET Nanobiotechnol. 13(1), 84–89 (2018)

    Article  Google Scholar 

  54. 54.

    Raghupathi, K.R., Koodali, R.T., Manna, A.C.: Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27, 4020–4028 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Manzoor, U., Siddique, S., Ahmed, R., Noreen, Z., Bokhari, H., Ahmad, I.: Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles. PLoS ONE 11, e0154704 (2016)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Zhang, L., Jiang, Y., Ding, Y., Daskalakis, N., Jeuken, L., Povey, M., O’Neill, A.J., York, D.W.: Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res. 12(5), 1625–1636 (2010)

    CAS  Article  Google Scholar 

  57. 57.

    Manzoor, U., Siddique, S., Ahmed, R., Noreen, Z., Bokhari, H., Ahmad, I.: Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles. PLoS ONE 11(5), e0154704 (2016)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    Thambidurai, S., Gowthaman, P., Venkatachalam, M., Suresh, S.: Natural sunlight assisted photocatalytic degradation of methylene blue by spherical zinc oxide nanoparticles prepared by facile chemical co-precipitation method. Optik 207, 163865 (2020)

    CAS  Article  Google Scholar 

  59. 59.

    Mahana, A., Guliy, O.I., Momin, S.C., Lalmuanzeli, R., Mehta, S.K.: Sunlight-driven photocatalytic degradation of methylene blue using ZnO nanowires prepared through ultrasonication-assisted biological process using aqueous extract of Anabaena doliolum. Opt. Mater. 108, 110205 (2020)

    CAS  Article  Google Scholar 

  60. 60.

    Islam, M.T., Dominguez, A., Alvarado-Tenorio, B., Bernal, R.A., Montes, M.O., Noveron, J.C.: Sucrose-mediated fast synthesis of zinc oxide nanoparticles for the photocatalytic degradation of organic pollutants in water. ACS Omega 4(4), 6560–6572 (2019)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Islam, M.T., Dominguez, A., Turley, R.S., Kim, H., Sultana, K.A., Shuvo, M.A.I., Alvarado-Tenorio, B., Montes, M.O., Lin, Y., Gardea-Torresdey, J., Noveron, J.C.: Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water. Sci. Total Environ. 704, 135406 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Sultana, K.A., Islam, T., Silva, J.A., Turley, R.S., Hernandez-Viezcas, J.A., Gardea-Torresdey, J.L., Noveron, J.C.: Sustainable synthesis of zinc oxide nanoparticles for photocatalytic degradation of organic pollutant and generation of hydroxyl radical. J. Mol. Liq. 307, 112931 (2020)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors thank Department of Nanoscience and Technology, TNAU and SRM Institute of Science and Technology for TEM and EDAX analysis, Physics Department, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India for XRD facility, MNCF, Indian Institute of Science, Bangalore for XPS analysis and Archbishop Casimir Instrumentation Centre, St. Joseph College, Trichy for SEM analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulkumar Kanniah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thangapandi, J.R., Chelliah, P., Balakrishnan, S. et al. Antibacterial and photocatalytic aspects of zinc oxide nanorods synthesized using Piper nigrum seed extract. J Nanostruct Chem (2021). https://doi.org/10.1007/s40097-020-00383-5

Download citation

Keywords

  • Piper nigrum
  • Semiconductors
  • ZnO nanorods
  • XPS
  • Photocatalysis
  • Antibacterial activity